HALFEN CAST-IN CHAINNELS TECHNICAL PRODUCT INFORMATION

Contents

1 HALFEN Channels HTA-CE

Application examples	8
General	9 - 10
Materials/Corrosion protection	11 – 12
Installation/Assembly	13 – 14
Identification/Geometry	15
Product range	16 - 18
HALFEN Bolts HS/HSR	19 - 23
Available types	24
HTA-CS (Curved channels)	25
Calculation	26
Software	27 - 28
Dynamic loading	37

2 HALFEN Channels HZA

_

Application examples	30
Product range	31
HALFEN HZS Bolts	32
Calculation	33 - 36
Dynamic loading	37

3 HALFEN HGB Guard rail fixings

4 HALFEN HTU Channels - fixings for trapezoid metal plates

Application examples

Installation/Assembly

General/Materials

Product range

Dimensioning

Application examples	3
General	4
Materials/Corrosion protection	2
Installation/Assembly	2
Product range	2
Dimensioning / calculation	44 - 5

Turning

N.	10	

7

29

38

52

53

54

55

56

Contents

5 Roof and walls

۱d ۱	valls	58
-	Application examples	59
-	HALFEN HSF Rafter shoe	60
-	HALFEN HNA Timber anchor	61
-	Masonry connection-systems ML/BL	62 - 64
-	HALFEN Dowels	63
-	Firewall-Joints	65
-	SPV Restraint with turnbuckle	66
-	HKZ Restraint tie	67-68
-	HVL Anchoring system	69
-	HALFEN HKW Corner guard	70

6 HALFEN HCW Curtain Wall

Application examples	/2
General	73
Product range	74 – 75
HALFEN Channel HCW 52/34 for curtain wall connection	76 - 77
HALFEN Channel HTA-R and HZA-R with rebar anchors	78
Brackets HCW-ED and HCW-EW for front-of-slab installation	79–81
Brackets HCW-B1 and HCW-B2 for top-of-slab installation	82 - 83

7 Accessories

ories		84	
-	Nuts, washers	85	
-	Threaded rods, hexagonal bolts, couplers, ring nuts	86	11/1/101
-	Clamping plates	87	
-	Framing channels HM/HZM/HL/HZL, type overview	88	
-	Framing channels HM/HZM/HL/HZL, application examples	89	

Appendix

-	Index	90
-	Addresses/Contacts	91

APPLICATION EXAMPLES HALFEN CAST-IN CHANNELS

Areas of Application

CURTAIN WALL

Edificio Gas Natural, Barcelona/Spain

BRIDGES

Passerelle Simone de Beauvoir, Paris/France

Power station

Rheinenergiestadion, Cologne/Germany

Lift fixings, guide rails

TUNNELS

Lötschberg-Base tunnel, Switzerland

HTU Trapezoidal sheet panels

UPS Air Hub, Cologne Bonn Airport, Germany

ROOFS AND WALLS

Timber pitched roof construction

1

HTA-CE Channels

Better safe than sorry

The right channel for every application

Besides excellent adjustability HALFEN Cast-in channels save considerable installation time.

The result: faster construction and therefore cost saving. HALFEN Cast-in channels are the ideal basis for easy to install, adjustable connections. A foam strip filler stops the ingress of concrete into the channel.

HALFEN HTA-CE Cast-in channels

- Application
- fixing of all types of building components
- NEW: HTA-CE 50/30P and HTA-CE 40/22P with more load capacity.

HALFEN HZA Cast-in channels, serrated Application

• fixing of all types of building components

Features

Features

adjustable

- adjustable
- load transmission in longitudinal channel direction

HALFEN Channels are suitable for various types of con-

concrete elements, stadium seating, in civil engineering

(fixing of tunnel signals) lift guide rails, crane runway,

HALFEN fixing systems - The intelligent alternative

· hot-rolled profile; suitable for dynamic loads

can be installed in concrete pressure

and tensile-stress zones

pipe fixings under bridges.

to drilling and welding.

struction connections, for example: façades, precast

- can be installed in concrete pressure and tensile-stress zones
- suitable for dynamic loads*
- *applies for all hot-rolled and serrated DYNAGRIP[®] channels

HALFEN HZA-PS Cast-in channels, serrated Application

 fixing of all types of building com ponents in safety critical areas of nuclear power stations and similar nuclear facilities

Features

- as HZA Channels
- suitable for exceptional load cases caused by earthquake, place crashes or explosions – for concrete crack widths up to 1.5 mm

7

HALFEN HGB Handrail connections Application

• fastening banisters on the thin front face of balcony slabs

Features

 the special ribbed head anchor provides good load transfer in thin concrete elements

Channel range and steel load capacity/tension

HALFEN has enhanced its anchor channel range; two new channel profiles are now available: HTA-CE 40/22P and HTA-CE 50/30P. The different profiles can now cover a significantly higher load range, providing up to 45% more load capacity. Therefore allowing more economical solutions.

HALFEN Anchor channels – with increased load capacity!

New: HTA-CE 40/22P - Previously, for a load of N_{Ed} > 11.1 kN the next larger channel had to be selected; a HTA-CE 50/30 (with N_{Rd,S,c} = 17.2 kN) instead of a HTA-CE 40/22. Now in most cases the HTA-CE 40/22P (with N_{Rd,S,c} = 16.1 kN) is sufficient. This also allows a more economical screw to be used; a HS 40/22 instead of a HS 50/30.

 $\begin{array}{l} \label{eq:HTA-CE 50/30P - Previously, for a load} \\ \text{of N_{Ed} > 17.2 kN the next larger channel} \\ \text{had to be selected; a HTA-CE 52/34 (with $N_{Rd,s,c}$ = 30.6 kN) instead of a HTA-CE 50/30. \\ \text{Now in most cases the HTA-CE 50/30P} \\ (with $N_{Rd,s,c}$ = 21.7 kN) is sufficient. \end{array}$

On-site safety: In many projects, different applications are therefore possible using a single channel profile. This reduces the risk of confusion when using different channels in one project. Furthermore, fewer bolt\screw types are required.

Minimal channel size for economical reinforcement layouts:

In respect to its load bearing capacity the new HTA-CE 40/22P can almost always be used instead of a HTA-CE 50/30. With a height of only 23 mm, the new channel is almost always installed completely in the required concrete cover. This allows more efficient reinforcement planning (mesh and supplementary reinforcement).

European certification:

The new HTA-HTA-CE 40/22P and HTA-CE 50/30P types are included in ETA-16/0453 and are therefore certified for use, without restrictions, in 30 European countries.

Curtain Wall

HALFEN Cast-in channels HTA-CE

The advantages at a glance

· cost effective installation using standard tools

matrices and rows

- optimised pre-planning reduces construction time
- large range of types available forvarious requirements
- no noise, no vibration during installation, therefore no health hazards

432-CPD-8394-01

turer declares, that it is responsible for the conformity of the product with the (DoP - Declaration of performance), and that the specified performance and compliance with all relevant European legislation has been applied.

HTA-CE Channels

2

HZA Channels

3

HGB Channels

4

HTU Channels

5

Roof and Wall

6

Curtain Wall

7

Application Examples

CURTAIN WALL

Fixings for curtain wall façades

SPORTS

Seat fixing in stadiums

NOISE BARRIERS

Fixings of noise barriers to concrete posts

UTILITY TUNNELS

Utility fixings in TBM tunnels with curved anchor channels

CURTAIN WALL

Fixings for curtain wall façades

LIFTS/ELEVATOR FIXINGS

Fixing guide rails with HALFEN Channels

BRIDGES

Fixings for drainage systems

TUNNELS

Fixing of overhead cables in railway tunnels

5

Roof and Wall

6

Curtain Wall

7

Accessories

1

General

Superposition of tension and shear Loadings

General information

Fire-resistance

Verification of anchorages for fire load must take the specifications of the Technical Reports TR 020 into account. "Evaluation of anchorage in concrete with regards to fire resistance". The corresponding characteristic values can be found in the annexes of ETA-09/0339 and ETA-16/0453.

Material fatigue

Design values according to ETA can be found in ETA-09/0339 for the HTA-CE 52/34, and in ETA-16/0453 for the HTA-CE 40/22P and the HTA-CE 50/30P.

Approvals on the internet Currently valid approvals can be found at:

www.halfen.com \triangleright Brochures \triangleright Approvals \triangleright Fixing systems. Or simply scan the code and select the required document.

Quality

Quality is the outstanding feature of our products. HALFEN materials and products are subjected to the most stringent quality control procedures. A quality inspection by the DNV GL* has verified that our quality management system meets the requirements of the ISO 9001:2015 standard.

*merger of DNV (Det Norske Veritas) and GL (Germanischer Lloyd) in 2013

EPD

An EPD® (Environmental Product Declaration) provides transparent and comparable ecological data which helps to evaluate the sustainability of a building. Already during the planning phase the data provided here is of great significance for architects and planners. The data provided also helps to ensure the high demands on the environmental performance of the building are met.

BIM

HALFEN already has considerable experience as a BIM partner and has successfully completed various projects using the BIM methodology. All HALFEN engineers are trained to properly supervise this process. With a combination of wide experience and highly-trained engineers the increasing demand for BIM projects can be efficiently met. Examples of previous projects developed using BIM can be found at www.halfen.com \triangleright Service \triangleright BIM \triangleright BIM references.

Certificate no. 202384-2016-AQ-GER-DAkkS

HTA-CE Channels

2

HZA Channels

3

HGB Channels

Materials / Corrosion Protection

Hot-dip galvanized FV: Zinc galvanized GVs: Dipped in a galvanizing bath, with a temperature HALFEN T-bolts are electrogalvanized of approx. 460 °C, this is a method used primarily and coated with a Cr(VI)-free thick layer for open-profile channels. passivation. HALFEN Cast-in channels, steel, hot-dip galvanized Steel Material Standard Zinc coat 2 1.0038 EN 10 025-2 ① FV: ≥ 55 µm Channel profile 1.0044 EN 10 025-2 ① FV: ≥ 55 µm EN 10263 or EN 10269 Bolt anchor B6 Steel FV: ≥ 55 µm EN 10 025-2 Weld-on anchor Steel FV: ≥ 55 µm ① Steel according to EN 10 025-2 and HALFEN specification HALFEN Bolts, galvanized steel Steel Material Standard Zinc coat FV: ≥ 50 µm Bolt Steel (Sc) 4.6 or (Sc) 8.8 EN ISO 898-1 GVs: ≥ 12 µm FV: ≥ 50 µm Hexagonal nut Steel (Sc) 5 or (Sc) 8 EN 898-2 GVs: ≥ 12 µm

Steel

Washer

Stainless steel (NR):

Chromium is the most important alloy element in stainless steel. A specific chromium concentration ensures the generation of a passive layer on the surface of the steel that protects the base material against corrosion. This explains the high corrosion resistance of stainless steel.

Materials:

- □ WB = Steel mill finished
- **FV** = Steel hot-dip galvanized
- **GVs** = Steel zinc galvanized (with special coating)

EN ISO 7089, EN ISO 7093

- A4 = Steel, stainless 1.4571/1.4404/1.4578
- HCR = Steel, stainless 1.4547 / 1.4529

HALFEN Cast-in channels, sta	inless steel					
					Stainless steel	
1 A		•		Material	Standard	Corrosion resistance class ②
	Ť		- Channel profile	1.4404 or 1.4571	EN 10 088	III
	Ц	- \		1.4529 or 1.4547		V
			- Bolt anchor B6	1.4404, 1.4571 or 1.4578	EN 10 088	Ш
				1.4529 or 1.4547		V
			Wold on anchor	1.4404 or 1.4571	EN 10 088	III
			vvelu-on anchor	Steel 3	EN 10 025-2	

				Stainless steel			
	Raamo			Material		Standard	Corrosion resistance class ②
		Bolt	1.4404, 1.4571, 1.4578 (A4-50 or A4-70)		EN 3506-1 and EN 10 088	ш	
			1.4529, HCR-50		EN 3506-1	V	
		-	- Hexagonal nut	1.4404, 1.4571, 1.4578 (A4-50, A4-70)		EN 3506-2 and	Ш
			1.4529, HCR-50		EN IU UOO	V	
		Washer	- Washer	1.4404, 1.4571		EN 10 088	ш
				1.4529 or 1.4547			V

2 See EN 1993-1-4, table A.3

HALFEN Bolts, stainless stee

3 Corrosion protection of mill finished anchor, see page 12

FV: ≥ 50µm

GVs: ≥ 12µm (Sc) = Strength class

6

Curtain Wall

7

Materials / Corrosion Protection

Corrosion protection requirements

	Material and applications								
	1	2	3	4					
Description	Dry interior-rooms	Damp interior-rooms	Medium corrosion level	High level of corrosion					
Definition of application areas	Anchor channels may only be used in components in indoor environments. For example: living and office spaces, schools; hospitals, commercial shops with the exception of wet rooms as in column 2.	Anchor channels may also be used in components in areas with normal humidity For example: kitchens, bathrooms and laundry- rooms in residential buildings. Excep- tions: where permanent steam is present and under water.	Anchor channels may also be used in outdoor environments (including industrial environ- ments and coastal regions) or in wet rooms, if con- ditions are not especially aggressive (for example: continual immersion in sea water etc. as in column 4).	Anchor channels may also be used in exceptionally aggressive environments (for example: continual immersion in sea water) or in seawater spray zones, chloride environments in swim- ming pools or in environments with an extremely aggressive chemical atmosphere (for example: flue gas desulphurization plants or road tunnels where de-icer systems are in use).					
Channel profile	Steel 1.0038, 1.0044; EN 10025 Hot-dip galvanized ≥ 55μm ©	Steel 1.0038, 1.0044; EN 10025 Hot-dip galvanized ≥ 55µm ⑥ Stainless steel 1.4307, 1.4567, 1.4541; EN 10088	Stainless steel 1.4404, 1.4571, 1.4062, 1.4162, 1.4362 EN 10088	Stainless steel 1.4462 ②, 1.4529, 1.4547 EN 10088					
Anchor	Steel 1.0038, 1.0214, 1.0401, 1.1132, 1.5525; EN 10263, EN 10269 Hot-dip galvanized 55μm ©	Steel 1.0038, 1.0214, 1.0401, 1.1132, 1.5525; EN 10263, EN 10269 Hot-dip galvanized ≥ 55µm Stainless steel 1.4307, 1.4567, 1.4541; EN 10088	Stainless steel 1.4404, 1.4571, 1.4362, 1.4578 EN 10088 Mill finish, 1.0038 ③						
Special HALFEN Bolts with shaft and screws in accordance with EN ISO 4018	Steel strength class 4.6/8.8 EN ISO 898-1 Zinc galvanized ≥ 5μm ④	Steel strength class 4.6 / 8.8; EN ISO 898-1, Hot-dip galvanized ≥ 50µm ① ⑤ Stainless steel, strength class 50, 70 1.4307, 1.4567, 1.4541 EN ISO 3506-1	Stainless steel Strength class 50, 70 1.4404, 1.4571, 1.4362, 1.4578 EN ISO 3506-1	Stainless steel Strength class 50, 70 1.4462 ②, 1.4529, 1.4547 EN ISO 3506-1					
Washers EN ISO 7089 and EN ISO 7093-1 Product classification A, 200 HV	Steel EN 10025 Zinc galvanized 5 µm ④	Steel EN 10025 Hot-dip galvanized ≥ 50µm ① ⑤ Stainless steel Steel grade A2, A3; EN ISO 3506-1	Stainless steel Steel grade A4, A5 EN ISO 3506-1	Stainless steel 1.4462 ©,1.4529, 1.4547 EN ISO 3506-1					
Hexagonal nut EN ISO 4032	Steel strength class 5/8 EN ISO 898-2 Zinc galvanized 5 µm ④	Steel strength class 5/8 EN ISO 898-2 Hot-dip galvanized ≥ 50μm ① ⑤ Stainless steel, strength class 70, 80 Steel grade A2, A3 EN ISO 3506-2	Stainless steel Strength class 70, 80 Steel grade A4, A5 EN ISO 3506-2	Stainless steel Strength class 70, 80 1.4462 @, 1.4529, 1.4547 EN ISO 3506-2					

① or zinc galvanized with special coating \geq 12 µm

③ 1.4462 not suitable for swimming baths
③ Steel in accordance with EN 10025, 1.0038 not for Anchor channels 28/15 and 38/17

HALFEN Channels (NR) mill finish welded-on anchors

Corrosion protection of the mill

finished weld-on anchor is based on

the following concrete cover c:

Profile HTA-CE	40/22P 40/25	52/34 54/33 50/30P 49/30	55/42	72/48 72/49
Concrete cover c [mm]	35	40	50	60

The minimum concrete cover depends on local environmental conditions and bid specifications.

Concrete cover c

HALFEN Channels (NR) made completely in stainless steel

The HALFEN Cast-in channels "entirely of stainless steel" are not restricted to any minimum concrete cover as no relevant corrosion occurs.

Areas of application

- · bridge and tunnel construction (fastening of pipes, etc.)
- construction of sewage treatment plants (fixing of spillovers)
- · chemical industry (installations exposed to aggressive substances)
- ventilated façades, e.g. masonry renders
- also for all structural reinforced concrete elements with higher demands on the concrete cover

④ Zinc galvanized in accordance with EN ISO 4042 ⑤ Hot-dip galvanized in accordance with EN ISO 10684 6 Hot-dip galvanized in accordance with EN ISO 1461

HALFEN Channel made in stainless steel - HCR

The high corrosion resistance (HCR) HALFEN Cast-in channels are mandatory when high concentrations of chlorides, sulphur and nitrogen oxides are present.

Areas of application

- road tunnels
- structures in salt water
- indoor swimming pools
- · areas not routinely cleaned
- poorly ventilated parking garages
- · in narrow, major city streets

1

HTA-CE Channels

2

HZA Channels

3

7

Installation/Assembly

3.1 Removing the filler

5

Roof and Wall

6

Curtain Wall

7

Accessories

KF - PE strip filler with reinforcement layer

4.1 Installing HALFEN bolts

Direct attachment ①

Square washer VUS

Surface-flush installation

① If the front surface of the channel is set back from the concrete surface, the attached structure must be shimmed with a washer (VUS). In case of shear stress, add bolt flexure to the tensile force.

Removing the strip filler Grip the strip filler at one end and pull out in one piece by hand, use a tool, e.g. a screwdriver.

Safe assembly with HALFEN Cast-in channels

HALFEN Bolts can be inserted anywhere in the channel slot, turned 90° and then locked in place by tightening the nut. Do not position bolts at channel ends past the last anchor. On channels with bolt anchors, the anchor locations are visible through the channel slot.

Check (

Bolts: After installation check that the bolts are properly aligned; the notch or notches in the tip of the shank must be at right angles to the longitudinal axis of the channel.

Fixings

The bolt heads must sit flush on both lips of the anchor channel and be secured by tightening the nut with a torque wrench with the required value. Observe the torque values in the tables on page 22.

Stand-off installation 2

Example: HALFEN Channel: HTA-CE 49/30 HS 50/30 - M16 HALFEN Bolt: Washer: VUS 49/30 - M16 2 Always install a square washer for stand-off installations.

Assembly instructions on the internet

Non-flush installation

Multi-language assembly instructions can be found at www.halfen.com \triangleright Brochures \triangleright Installation Instructions. Or scan the code and select the required document.

Identification / Geometry

Identification

Channel material	Type identification
1.0038 / 1.0044	HTA-CE 38/17
A2: 1.4307	HTA-CE 38/17 - A2
A4: 1.4404 / 1.4571	HTA-CE 38/17 - A4
HCR: 1.4529 / 1.4547	HTA-CE 38/17 - HCR
Type identification: ① Inside surface, bottom of the channel. ② Additionally on channel side	1 1 1 1 1 1 1 1 1 1 1 1 1 1

Minimum edge distances and minimum bolt spacing

Anchors must be installed at a minimum distance from the component edges. The distance depends on the selected channel profile and the corresponding HALFEN T-head bolt.

According to the ETA, the spacing between bolts s_s must not be less than $5 \times d_s$. Reduction of the load bearing capacity is required if $s_s < s_{slb}^*$ (see table on page 16).

 s_{slb} = centre distance of the bolts N_{Rd, s, I}

dge and bol	t spacing [mm]		
HTA-CE Profiles	Μ	s _{s,min}	c _{min}	e _{min}
	6	30	40	15
20/45	8	40	40	15
28/15	10	50	40	15
	12	60	40	15
	10	50	50	25
38/17	12	60	50	25
	16	80	50	25
	10	50	50	25
40/25 40/22P	12	60	50	25
10/221	16	80	50	25
	10	50	75	50
40/20	12	60	75	50
49/30	16	80	75	50
	20	100	75	50
	10	50	75	40
50/200	12	60	75	40
50/30P	16	80	75	40
	20	100	75	40
	10	50	100	65
52/34	12	60	100	65
54/33	16	80	100	65
	20	100	100	65
	10	50	100	65
55/42	12	60	100	65
55/42	16	80	100	65
	20	100	100	65
	20	100	150	115
72/49	24	120	150	115
72/48	27	135	150	115
	30	150	150	115

1

HTA-CE Channels

2

HZA Channels

3

HGB Channels

4

HTU Channels

5

Roof and Wall

6

Curtain Wall

7

Product Range: Overview of Channels + Bolts

HTA-CE 72/48

Identification values HTA-CE

Profile

Curtain Wall

7

Accessories

Туре		hot-rolled	cold-rolled	hot-rolled	hot-rolled	cold-rolled	
Geometry HALFEN Ch	annels HTA-CE						
Note: ob installat hinst	beerve the ion height $-+$						
Material	Steel						
	A4						
	HCR						
Bolts		HS 72/48	HS 72/48	HS 50/30	HS 50/30	HS 50/30	
Threads		M20 - M 30	M20 - M30	M10 - M20	M10 - M20	M10 - M20	
s _{slb} [mm]		129	129	109	88	88	
Profile load	capacity						
N _{Rd,s,I} [kN]		55.6		44.4	36.1		
V _{Rd,s,I} [kN]		72.2	55.6	57.8	39.7	30.6	
Mpd c flou	Steel	7472	-	5606	2933	2595	
[Nm]	NR	7630	7493	-	2996	2595	
Geometry							
h _{inst} [mm] (0	(191)	(193)	182 (185)	162 (164)	161 (164)	
b _{ch} [mm]		72	72	54.5	52.5	54	
h _{ch} [mm]		48.5	49	42	33.5	33	
I _y [mm ⁴]	Steel NR	349721	293579	187464	93262	72079	
h _{ef} [mm]		179	179	175	155	155	
c _{min} [mm]		150	150	100	100	100	
* Concrete le	oad capacity has t	to be verified for each individu	al case (taking the geometric	boundary conditions in	nto account).		

HTA-CE 72/49

HTA-CE 55/42

HTA-CE 52/34

HTA-CE 54/33

c_{min} = minimal spacing channel/concrete edge

 $N_{Rd,s,l}$ = channel lip load capacity (tension) V_{Rd,s,l} = channel lip load capacity (shear)

① Nominal size and tolerance

 $\ensuremath{\textcircled{O}}$ () value in brackets is for weld-on I-anchors Materials: See page 11

NR = Stainless steel s_{slb} = axial spacing for bolts for N_{Rd,s,I}

@ 2018 HALFEN \cdot B 18-E \cdot www.halfen.com

Product Range: Overview of Channels + Bolts

	HTA-CE 50/30P	HTA-CE 49/30	HTA-CE 40/22P	HTA-CE 40/25	HTA-CE 38/17	HTA-CE 28/15
	hot-rolled	cold-rolled	hot-rolled	cold-rolled	cold-rolled	cold-rolled
	Ť			Ť	Ť	
*			39.5			
22						
	HS 50/30	HS 50/30	HS 40/22	HS 40/22	HS 38/17	HS 28/15
	M10 - M20	M10 - M20	M10 - M16	M10 - M16	M10 - M16	M6 - M12
	98	81	79	65	52	42
	21.7 22.4	17.2	19.4	11.1	10.0	5.0
	2437	1455	1208	956	504	276
	2743	1485	1358	931	516	282
	112 (161)	103 (101)	97 (154)	89 (89)	81 (82)	50 (79)
	49	50	39.5	40	38	28.0
	30	30	23	25	17.5	15.25
			19859	20570		
	52575	41827	19859	19097	8547	4060
	106	94	91	79	76	45
	75	75	50	50	50	40

Product Range

Standard product range

The standard HALFEN Cast-in channel product range with European Technical Approval is listed in the following table. See also current HALFEN Price list.

Other lengths are available on request. Also see table below: Project related orders "Standard fixed lengths".

Supplied lengths and nu	mber of anchors				
		Length [mm] / N	umber of anchors		
HTA-CE 72/48	HTA-CE 72/49	HTA-CE 55/42	HTA-CE 40/25, 50/30P, 49/30, 52/34, 54/33	HTA-CE 40/22P	HTA-CE 28/15, 38/17
150 /2	150 /2	150 /2	150 /2	150 /2	100 /2
200 /2	200 /2	200 /2	200 /2	200 /2	150 /2
250 /2	250 /2	250 /2	250 /2	250 /2	200 /2
300 /2	300 /2	300 /2	300 /2	300 /2	250 /2
350 /3	350 /3	350 /3	350 /3	350 /3	300 /3
400 /3	400 /3	400 /3	400 /3	400 /3	350 /3
550 /3	550 /3	550 /3	550 /3	550 /3	450 /3
1050 /5	1050 /5	1050 /5	800/4	800 /4 ^②	550 /4
6070 /25		6070 /25	1050 /5	1050 /5	850 /5
			3030 /13 ^①	1300 /6 ^②	1050 /6
			6070 /25	1550 /7 ^②	3030 /16
				1800 /8 ^②	6070 /31
				2050 /9 ^②	
				2300 /10 ²	
				2550 /11 ^②	
				3030 /13 ^②	
				6070 /25	
		Anchor spacing ≤ 250 mm			Anchor spacing ≤ 200 mm

1 Does not apply to HTA-CE 52/34, HTA-CE 54/33 2 Does not apply to HTA-CE 40/22P - A4

Standard fixed lengths - Project related orders

Supplied lengths and number of anchors - Project related orders

HTA-CE 28/15,	HTA-CE	38/17
---------------	--------	-------

HTA-CE 40/22P, 40/25, 49/30, 50/30P, 52/34, 54/33, 55/42, 72/48, 72/49

	Length [mm] / N	umber of anchors		Length [mm] / Number of anchors					
1250 /7	1450 /8	1650 /9	1850 /10	1050 /5	1300 /6	1550 /7	1800 /8		
2050 /11	2250 /12	2450 /13	2650 /14	2050 / 9	2300 /10	2550 /11	2800 /12		
2850 /15	3030/ 16	3250 /17	3450 /18	3030 /13	3300 /14	3550 /15	3800 /16		
3650 /19	3850 /20	4050 /21	4250 /22	4050 /17	4300 /18	4550 /19	4800 /20		
4450 /23	4650 /24	4850 /25	5050 /26	5050 /21	5300 /22	5550 /23	5800 /24		
5250 /27	5450 /28	5650 /29	5850 /30	-	-	-	-		
	Anchor spaci	ng ≤ 200 mm			Anchor spaci	ing ≤ 250 mm			

HALFEN Bolts HS

HALFEN Bolts – Type HS

- two direction load capacity
- identified on bolt tip with **1 notch**

Material grade A4-50/A4-70 Stainless steel

Strength class 4.6/8.8

galvanized (GVs) or hot-dip galvanized (FV)

Strength class 50 Stainless steel (1.4529/1.4547)

Calculating the bolt length Ireq for HALFEN Bolts

Standard HALFEN Bolts (no nib or serration)

for all profile types HTA-CE

Bolt diameter	v _{min} [mm]
M6	11.0
M8	12.5
M10	14.5
M12	17.0
M16	20.5
M20	26.0
M24	29.0
M27	31.5
M30	33.5

Lip dimensions f	
Channel profile	f [mm]
28/15	2.25
38/17	3.0
40/22P	6.0
40/25	5.6/ <u>5</u> .4 ^①
49/30	7.39
50/30P	7.85
52/34	10.5
54/33	7.9
55/42	12.9
72/48	15.5
72/49	9.9
() value f for staipless o	tool

- I_{req} = required bolt length
- t_{fix} = thickness of clamped component
 - = profile lip height

f

- h = washer thickness
- v_{min} = nut height EN ISO 4032 + overhang approximately 5 mm (for M20: 7 mm)

Bolt design values

The table on the right lists the design resistance of HALFEN Bolts with different thread diameters, materials and strength classes.

 $N_{Rd,s,s}$ is the resistance against tension loads, $V_{Rd,s,s}$ is the the resistance against shear loads and $M^0_{Rd,s,s}$ is the flexural resistance when subjected to transverse load induced with a cantilever.

Design resistance											
Materia	l / Strength	class	M6	M8	M10	M12	M16	M20	M24	M27	30
	N _{Rd,s,s}	[kN]	4.0	7.3	11.6	16.9	31.4	49.0	70.6	91.8	112.2
4.6	V _{Rd,s,s}	[kN]	2.9	5.3	8.3	12.1	22.6	35.2	50.7	66.0	80.6
	M ⁰ _{Rd,s,s}	[Nm]	3.8	9.0	17.9	31.4	79.8	155.4	268.9	398.7	538.7
	N _{Rd,s,s}	[kN]	10.7	19.5	30.9	44.9	83.7	130.7	188.3	244.8	299.2
8.8	V _{Rd,s,s}	[kN]	6.4	11.7	18.6	27.0	50.2	78.4	113.0	146.9	179.5
	M ⁰ _{Rd,s,s}	[Nm]	9.8	24.0	47.8	83.8	213.1	415.4	718.4	1065.2	1439.4
	N _{Rd,s,s}	[kN]	3.5	6.4	10.1	14.8	27.4	42.8	61.7	80.2	98.1
A4-50	V _{Rd,s,s}	[kN]	2.5	4.6	7.3	10.6	19.8	30.9	44.5	57.9	70.7
	M ⁰ _{Rd,s,s}	[Nm]	3.2	7.9	15.7	27.5	70.0	136.3	235.8	349.7	472.5
	N _{Rd,s,s}	[kN]	7.5	13.7	21.7	31.6	58.8	91.7	132.1	171.8	210.0
A4-70	V _{Rd,s,s}	[kN]	5.4	9.9	15.6	22.7	42.2	66.0	95.1	123.6	151.0
	M ⁰ _{Rd,s,s}	[Nm]	6.9	16.8	33.5	58.8	149.4	291.3	503.7	746.9	1009.2

4 HTU Channels **b**

1

HTA-CE Channels

2

HZA Channels

3

HGB Channels

HALFEN Bolts HS

HTA-CE Channels

2

HZA Channels

3

HGB Channels

4

HTU Channels

5

Suitable			40.72/40				E4/22 E0/202	40./20
for profile		HTA-CE /2/4	48, 72/49	HIA-C	le 55/42, 52/34,	54/33, 50/30P,	49/30	
Bolt		HS 72	/48		HS 5	0/30		
Bolt dimensions		8				ST Frank		
l [mm]	M20	M24	M27	M30	M10	M12	M16	M20
15								
20								
25								
20						A4-70	A4-50	
30					FV4.6 GVs4.6	GVs4.6	GVs4.6	
35								GVs4.
40					GVs4.6	A4-70 FV4.6 GVs4.6	A4-50 FV4.6 GVs4.6 GVs8.8	
45						GVs8.8		A4-50 GVs4 GVs8
50		A4-50				A4-70	HCR-50* A4-50	
	FV4.6	FV4.6			GVs4.6	GVs4.6	FV4.6 GVs4.6	
55								A4-50 FV4.0 GVs4.
60	FV8.8					FV4.6 FV8.8* GVs4.6 GVs8.8	A4-50 FV8.8 GVs4.6 GVs8.8	GVs8.
65								GVs4.
70								
/2	FV4.6		FV4.6	FV4.6				A4-50
75	GVs8.8	FV4.6 FV8.8						GVs4
80						FV8.8* GVs4.6 GVs8.8	HCR-50* A4-50 FV8.8* GVs4.6 GVs8.8	FV4.6 GVs8.
87						A4-70T	A4-70T	
100	FV4.6	A4-50 FV4.6	FV8.8	FV4.6		A4-50 GVs4.6	A4-50T FV4.6 GVs4.6	A4-50 FV4.0 GVs4.
125	GVs8.8	GVs8.8				GVICA 6	GVs8.8	GVs8.
125						0734.0	01054.0	0VS4.
150	FV4.6	FV4.6		FV4.6		GVs4.6	FV4.6 GVs4.6	GVs4. GVs8.
200	FV4.6	FV4.6		FV4.6		GVs4.6	GVs4.6	GVs4
250								
300							GVs4.6	GVs4

HALFEN Bolts HS

Suitable									/ / _	
for profile	HIA	-CE 40/22P, 4	0/25		HTA-CE 38/1.	/		HIA-C	E 28/15	
Bolt		HS 40/22			HS 38/17			HS 2	28/15	
Bolt dimensions		33.0			31.6					
l [mm]	M10	M12	M16	M10	M12	M16	M6	M8	M10	M12
15							GVs4.6	GVs4.6	GVs4.6	
20	GVs4.6	GVs4.6		GVs4.6	GVs4.6		GVs4.6	GVs8.8 GVs4.6	GVs4.6	
25						A4-50	GVISA 6	GVISA 6	A4-70	
30	A4-70 GVs4.6	A4-50 FV4.6 GVs4.6 GVs8.8	A4-50 GVs4.6	<mark>A4-70</mark> FV4.6 GVs4.6	<mark>A4-70</mark> FV4.6 GVs4.6	A4-50 GVs4.6	GVs4.6	A4-70 GVs4.6	HCR-50* A4-70 FV4.6 GVs4.6	GVs4.6
35										GVs4.6
40	A4-70 GVs4.6	A4-50 A4-70 GVs4.6 GVs8.8	GVs4.6	GVs4.6	A4-70 GVs4.6	<mark>A4-50</mark> FV4.6 GVs4.6	GVs4.6	GVs4.6	<mark>A4-70</mark> FV8.8 GVs4.6	
45		GVs8.8								
50	A4-70 GVs4.6	A4-50 FV4.6 GVs4.6	A4-70 A4-50 A4-50L FV4.6 GVs4.6	FV4.6 GVs4.6	A4-70 A4-50L FV4.6 GVs4.6	A4-50 A4-50L FV4.6 GVs4.6		GVs4.6	HCR-50* A4-70 A4-50L FV4.6 GVs4.6	GVs4.6
55										
60	GVs4.6	FV4.6 FV8.8* GVs4.6 GVs8.8	FV4.6 FV8.8 GVs4.6 GVs8.8	GVs4.6	HCR-50* A4-70 GVs4.6 GVs8.8	A4-50 FV8.8 GVs4.6		GVs4.6	GVs4.6	
65										
70					FV8.8					
72					A4-70T					
75										
		A4-50 A4-50	A4-50 A4-50L		A4-70 A4-50L	A4-50			A4-70	
80	GVs4.6	FV4.6 GVs4.6 GVs8.8	GVs4.6 GVs8.8	GVs4.6	GVs4.6	FV4.6 GVs4.6		GVs4.6	GVs4.6	GVs4.6
87										
100	GVs4.6	GVs4.6 GVs8.8	A4-50 FV4.6 GVs4.6	GVs4.6	A4-50 GVs4.6	FV4.6 GVs4.6		GVs4.6	GVs4.6	
125		GVs4.6	GVs4.6		GVs4.6	GVs4.6			GVs4.6	
150		GVs4.6	GVs4.6	GVs4.6	GVs4.6	GVs4.6			GVs4.6	
200		GVICA 6	GVICA 6		GV/cA 6	CVc4.6			CVICA 6	
250		0754.0	GVs4.6		0754.0	0754.0			0754.0	
300			GVs4.6							
= Left-hand thread	T = Parti	al thread	Material ty	nes. see nag	e 11 *on rec	ulest 🕧 Ot	her bolt leng	ths and mate	rials on reque	stl

HALFEN Bolts HS

Torque values HS

Standard

1

HTA-CE Channels

Components are braced against the concrete and anchor channel. Torque is applied as in the following table and must not be exceeded.

Standard: Recommended torque values Tinst Torque value T_{inst} [Nm] HALFEN Bolt Steel 4.6; 8.8 HTA-CE HS...**M** Stainless steel Profile [mm] Strength class 50 Strength class 70 6 8 8 28/15 10 13 12 15 10 15 38/17 12 25 16 40 10 15 40/22P 40/25 12 25 16 45 10 15 49/30 50/30P 12 25 16 60 20 75 10 15 52/34 12 25 54/33 16 60 20 120 10 15 12 25 55/42 16 60 20 120 20 120 24 200 72/48 72/49 27 300 30 380

Steel-Steel

Components are braced against the anchor channels using suitable washers. Torque is applied as in the following table and

must not be exceeded.

			Torque v	value T _{inst} [Nr	n]
HTA-CE Profile	HALFEN Bolt HS M [mm]	Steel 4.6	Steel 8.8	Stainless steel Strength class 50	Stainless steel Strength class 70
	6	3	-	3	-
20/45	8	8	20	8	15
28/15	10	15	40	15	30
	12	25	70	25	50
	10	15	40	15	30
38/17	12	25	70	25	50
	16	65	180	60	130
	10	15	40	15	30
40/22P 40/25	12	25	70	25	50
,	16	65	180	60	130
	10	15	40	15	30
49/30	12	25	70	25	50
50/30P	16	65	180	60	130
	20	130	360	120	250
	10	15	40	15	30
52/34	12	25	70	25	50
54/33	16	65	180	60	130
	20	130	360	120	250
	10	15	40	15	30
55/42	12	25	70	25	50
55/42	16	65	180	60	130
	20	130	360	120	250
	20	130	360	120	250
72/48	24	230	620	200	440
72/49	27	340	900	300	650
	30	460	1200	400	850

① Torque values apply only to bolts in delivery condition (unlubricated).

Curtain Wall

7

HALFEN Bolts HRS with Nib (Not ETA Approved)

HALFEN Bolts – Type HSR

HALFEN Bolts with nib

Bolt design values HSR

- only for hot-rolled profiles: 40/22P, 50/30P, 52/34, 72/48
- only for normal steel: WB and FV
- load capacity in all directions
- load capacity in channel longitudinal direction according to expert report
- identification on bolt tip with **2 notches**

Available HSR								
Suitable for profile	72/48	52/34,	40/22P					
Bolt	HSR 72/48	HSR 5	50/30	HSR 40/22				
Bolt dimensions	395		33.94					
l [mm]	M20	M16	M20	M16				
40		FV8.8		GVs8.8				
45			GVs8.8					
60		GVs8.8	GVs8.8	GVs8.8, FV8.8*				
75	FV8.8		GVs8.8					
GVs = Zinc ga FV = Hot-dip	GVs = Zinc galvanized with special coating FV = Hot-dip galvanized * on request							

Torque values HSR	
HSR 8.8	Torque values [Nm]
M16	200
M20	400

Load capacity HSR	
	Grade 8.8 in channel longitudinal direction according to expert report
Bolt HSR	F _{Rd} [kN]
40/22 - M16	7.0
50/30 - M16	7.0
50/30 - M20	10.5
72/48 - M20	10.5

HALFEN Bolts HS: Design value; load bearing capacity F_{Rd} [kN]

for steel profiles for profiles in stainless steel Bolt type HS with strength class
Bolt type HS with strength class
Thread Ø 4.6 8.8 ^① A4-50 A4-70
M6 0.14 0.56 –
M8 0.28 0.98 0.28
M10 0.42 1.54 0.42
M12 0.70 2.24 0.70
M16 1.26 4.20 1.26
M20 1.96 6.58 1.96
M24 2.80 9.52 2.80
M27 3.64 12.46 -
M30 4.48 15.26 -

Talues only appliable with torque moments T_{inst} steel-steel (see table on the right, on page 22)

Not included in the ETA!

Following combination can be used in supporting structures subjected to loads in channel longitudinal direction:

- hot-rolled, smooth, hot-dip galvanized HALFEN Channels with
 HALFEN HSR Type Bolts with nib
- serrated HALFEN Channels HZA with serrated HALFEN Bolts HZS, see page 29

See table on the left for the maximum design values for friction load. See page 22 for torque values. HTA-CE Channels

6

Custom Anchors - Anchor Variations (Not ETA Approved)

ANK-E end anchor; for on-site custom length HALFEN Cast-in channels

Notes for assembling end anchor type ANK-E

- Cut the HALFEN Cast-in channel at the selected point. The cut face must be at a right angle to the longitudinal axis of the channel. The end projection "e" should not be less than 35 mm and not more than 175(225) mm*.
- Select the correct ANK-E End anchor for the HALFEN Cast-in channel profile; see table on the right. Slide the clamping element on to the back of the channel. If necessary, push in the foam filler at the end of the channel.

On-site HALFEN End anchor

 $35 \le e \le 175(225)^{\frac{1}{2}}$

Hot-dip galvanized

ANK-E

• Tighten the bolt by applying the required torque. See table (right) for correct torque value.

End anchor selection									
for profile	End anchor	Thread	Torque T_{inst} [Nm]						
28/15 - FV	ANK-E1 - FV	M8	10						
28/15 - A4	ANK-E1 - A4	M8	10						
38/17 - FV									
40/25 - FV	ANK-E2 - FV	M10	20						
41/22 - FV ^①									
38/17 - A4									
40/25 - A4	ANK-E2 - A4	M10	20						
41/22 - A4 ^①									

① Short HZA 41/22 sections may be used with one end anchor only. Not included in the approval.

* 175: for 28/15, 38/17 225: for 40/25, 41/22

Custom lengths

HALFEN Anchor channels, hot-dip galvanized with stainless steel anchors

[mm]

Requirements

components."

Prestressing

strand

according to EN 1992-1-1/NA

(EC 2 with German National Annex,

2nd edition, 2016, chapter 8.10.1.1)

Otherwise there is a risk of hydrogen

≥ 20

induced stress corrosion cracking.

"Ensure at least 20mm concrete between

pre-stressed tension strands and galvanized

Solution

Prestressing

strand

If hot-dip galvanized channels are used together with stainless steel bolt-anchors then the pre-stressed tension-strands are allowed to have contact with the stainless steel bolt anchor.

Types:

Lengths available: up to 6.07 m

Available profiles:

- 50/30P
- 49/30
- 40/25
- 38/17

Roof and Wall

Available Types - HTA-CS / Channel Pairs / Corner Elements

HALFEN Channels HTA-CS - Curved Solution

Areas of application:

- tunnel construction
- · reinforced concrete tunnels for utilities
- curved walls
- sewage plants

Ordering example:

HALFEN Cast-in channel, curved HTA-CS 52/34-Q - A4, R_i = 4000 mm, L = 1050 mm

Curved HALFEN Cast-in channels in tunnel segments

Smanest radius – an materiais															
Profile		HTA-CS	HTA-CS	HTA-CS	HZA-CS	HTA-CS	HTA-CS	HTA-CS	HTA-CS	HTA-CS	HZA-CS	HZA-CS	HZA-CS	HTA-CS	HTA-CS
N	\aterial	72/48	72/49	54/33	53/34	52/34	50/30P	49/30	40/22P	40/25	41/22	29/20	38/23	38/17	28/15
Inner		on request	on request	0.80 m	on request	0.75 m	0.80 m	0.80 m	1.80 m	1.60 m	on request	on request	on request	on request	on request
min. R _i		on request	on request	0.80 m	on request	0.80 m	0.80 m	0.80 m	2.40 m	2.50 m	on request	-	on request	on request	on request
Outer		4.00 m	on request	4.00 m	on request	3.60 m	2.10 m	3.00 m	2.10 m	4.00 m	on request	on request	on request	on request	on request
min. R _a		on request	on request	4.00 m	on request	3.60 m	2.10 m	5.70 m	6.00 m	4.00 m	on request	-	on request	on request	on request
🔲 hot-dip gal	vanized	ł	🔲 stair	less steel	A4										

HALFEN Channel pairs

Material/type:

Channel (Type straight or curved): **FV** = Hot-dip galvanized **A4** = Stainless steel

A4 - Stairliess steel

Spacer:

Reinforced concrete B500B or B500B/A NR, Ø 10 – 16 mm Recommended for stainless steel type spacers in: B500B/A NR.

Ordering example:

Type:HALFEN Channel pair HTA-CE 38/17Dimensions:L = 350 mm, a = 200 mmMaterial:hot-dip galvanized, with fillerRadius: $R_i = ...$ (for curved type)

HALFEN Corner channel

Material/type:

Channel and anchor: FV = Hot-dip galvanized A4 = Stainless steel

Standard type:

a/b = 125/250 mm Other lengths for a and b and other profiles are available on request

Figure: HTA-CE 38/17 - Corner piece

Area of application:

- fixing for HALFEN Console anchors for supporting masonry renders
- other near edge fixings

4

Calculation Basics

General

The following information is necessary to verify an anchor channel:

- type of HALFEN Cast-in channel and material
- · length of the HALFEN Cast-in channel with number of anchors and spacing
- position of the HALFEN Cast-in channel in the concrete, located by its distance from the lower, upper left and right edges of the component
- thickness of the concrete components
- concrete strength class
- · condition of the concrete; cracked or verified as non-cracked
- is there dense reinforcement in the vicinity of the anchor channel
- HALFEN T-head bolt thread size
- bolt positions
- · tensile load and shear load of each bolt

Verification method

5. Verify anchor pull-out failure **1.** Select channel. (tension loading). 6. Verify concrete cone failure (tension loading). 2. Verify local load application H Tip: (channel lips) for tension, shear A free, simple to use calculation and combined loading. software to simplify planning can be downloaded at **7.** Verify pry-out failure www.halfen.com. (loading in shear). 3. Calculate the anchor loads resulting from tensile loads and 8. Verify concrete edge failure If verification is negative, shear loads according to the (loading in shear) considering a determine required additional load influence model (unfavourpossible structural edge reinforcereinforcement. able anchor and load position). ment. 9. Verify concrete failure for 4. Verify the connection If last verification is negative, combined loading, (combination between anchor and channel determine required additional of 6. and 7. as well as combination reinforcement. (tension loading). of 6. and 8.).

Technical support

individual projects.

Engineering services and

technical support for your

Our contact information can be

found on page 91 of this catalogue.

5

Roof and Wall

6

Curtain Wal

7

Software

HALFEN Software HTA-CE

The HALFEN calculation program for HALFEN Cast-in channels according to the ETA provides the user with a convenient and very powerful calculation tool.

Verifications

CEN/TS 1992-4 and EOTA TR047 require a wide range of verifications for cast-in channels and the concrete used. These verifications are processed by the user-friendly HALFEN software. In just a few seconds the user is presented with a list of suitable HALFEN Cast-in channels for the relevant load situation.

Boundary conditions

The calculation takes into account all necessary boundary conditions, typical examples being:

- · cracked or non-cracked concrete
- the geometry of the concrete components, in particular the distances from the channel to the component edge
- · various reinforcement patterns
- consideration of several dimensioning or characteristic loads
- positioning of the loads with a definable adjustment range, and the option of shifting the defined bolt pattern along the complete channel length

- verification of the required HALFEN T-head bolts and if required also for stand-off installations
- engineering consideration of fatigue loads and fire influence

Input

The geometry and loads are entered interactively. Entries are displayed promptly in a 3D graphic. Entries can also be changed directly in the graphic. Click on the load, the measurement or the component line you want to change to make the required modification.

Results

After calculation, the software output provides either the results for a preselected profile, or in the case of automatic selection a list of all suitable profiles. Profiles and T-bolts with in-complete verifications are highlighted in red.

Screenshot 1: The HALFEN HTA-CE Software start screen

Screenshot 2: Input screen, HALFEN HTA-CE Software

Screenshot 3: Interactive 3D-display

Screenshot 4: Results list

7

All software can be found under: www.halfen.com > Downloads > Software/CAD

Software

HALFEN Software HTA-CE

Visual control

All verifications for the current channel profile are listed in a tree structure. Green check-marks indicate successful verifications. Red check-marks indicate unsatisfactory verifications.

For further visual control a progressbar on the right indicates the status of the verification process. Here too, red bars mean that a load has been exceeded, while green bars symbolize verifications that meet the criteria.

Detailed calculation information (with load positions, section sizes and utilization factors) can also be selected in a tree menu.

After selecting a HALFEN Cast-in channel and suitable bolts, the dimensioning results can be imported into the data list and saved.

Print-outs

Print-outs are possible in a brief and in a verifiable long version. The long version includes all decisive verifications, a diagram of necessary reinforcement and a 2D graphic of the geometry and load.

The latest version of the dimensioning program is available for download on the Internet at *www.halfen.com*.

System requirements:

- Windows 10, Windows 8, Windows 7,
- Microsoft .NET Framework 4.6

Screenshot 5: Overview of results

Screenshot 6: Print preview

Tender text

HALFEN Channel type HTA-CE 49/30 - A4 - 350 - KF - ANK.A

HALFEN Channel HTA-CE 49/30 with smooth channel lips for adjustable fixing of components,

according to European Technical approval ETA-09/0339, suitable for anchoring in reinforced or non-reinforced standard concrete in a strength class of at least C12/15 and a maximum C90/105 in accordance with EN 206 under quasi-static loading as well as fire exposure.

Type HTA-CE 49/30 - A4 - 350 - KF - ANK.A4with $N_{Rk,s,c} = 31 \, \text{kN} = \text{char. resistance, steel failure (tension), connection channel anchorA4 = Carbon steel or stainless steel 1.4404 / 1.4571,350 = Channel length [mm] with 3 anchors,KF = Foam strip filler,$

ANK.A4 = Anchor of stainless steel 1.4404 / 1.4571 / 1.4578,

or equivalent; deliver and install according to the manufacturer's instructions.

HTA-CE Channels

HALFEN Cast-in channels HZA

The advantages at a glance

part from excellent adjustability, HALFEN Cast-in channels save considerable installation time. The result: faster construction and therefore reduced overall costs.

HZA HALFEN Channels Cold-rolled, serrated

HZA HALFEN Channels DYNAGRIP Hot-rolled, serrated

serrated

suitable for dynamic loads

HZA-PS HALFEN Channels Hot-rolled, serrated

serrated

3D-Loads

suitable for dynamic loads

suitable for seismic loading

suitable for applications in safety relevant areas in nuclear facilities

Safe and reliable

- no damage to the main reinforcement
- approved for fire-resistant structural elements
- suitable for installation in concrete pressure and concrete tensile zones
- · hot-rolled channels, suitable for dynamic loads
- · building authority approved

Quick and economical

- · adjustable anchorage
- · bolts instead of welding
- · maximum efficiency when installing in rows
- · cost-effective installation using standard tools
- · optimized pre-planning reduces construction time
- · large range of channels types for various applications
- · user-friendly installation; no noise, dust and vibration

HALFEN Cast-in channels HZA-PS

More Information on HZA-PS is available at: www.halfen.com ⊳Products ⊳Fixing systems ⊳HZA - DYNAGRIP Cast-In Channels Or scan the QR-Code and select the current "HZA-PS" catalogue.

© 2018 HALFEN · B 18-E · www.halfen.com

2

3

7

Application Examples: Installations with HALFEN Cast-in Channels HZA

CURTAIN WALL

Fixings of a Curtain wall façade, HZA near edge installation

INDUSTRIAL PLANT INSTALLATIONS

Pipe supports on vertical HZA Channels

LIFTS / ELEVATORS

Fixing for guide rails

30

FAÇADES

Fixings for emergency access balconies (Vertical installation of HALFEN Channels)

SKI LIFT

Fixings of the drive unit for a ski lift

INDUSTRIAL BUILDING

Vertical channels in columns to attach further components

5

4

6

Curtain Wall

7

Areas of Application / Product Range

Material and area of application									
Area of application	Use only possible if all fixture components are protected by a minimum concrete cover, depending on environmental conditions, as specified in DIN EN 1992-1-1:2011-01.		For use in building compo- nents in rooms with normal humidity (including kitchens, bathrooms, laundry rooms in residential buildings).	Building components, corrosion class III, according to EN 1993-1-4, table A.3.					
Channel profile	Mill finish	Hot-dip galvanized (thickness ≥ 50µm)	Hot-dip galvanized (thickness ≥ 50µm)	Stainless steel 1.4404/1.4571					
			Hot-dip galvanized (thickness ≥ 50µm)	Welded anchor mill finish @					
Anchor	Mill finish	Hot-aip galvanized (thickness ≥ 50µm)	Bolt anchor in stainless steel 1.4404/1.4571	Stainless steel 1.4404/1.4462 1.4571/1.4578					
Bolts, nuts, washers	No corrosion protection	Zinc galvanized (thickness ≥ 5 µm) Mechanically galvanized (thickness ≥ 10 µm)	Hot-dip galvanized ① (thickness ≥ 40µm)	Stainless steel A4-50 FA-70 A4-70					

Or zinc galvanized with special coating, thickness > 12 $\mu m.$

② Only allowed for profiles 38/23, 53/34, 64/44 and 41/22.

For corrosion protection of the welded anchors a minimum concrete cover c is given: for profile (38/23) 30mm; (41/22) 30mm; (53/34) 40mm; (64/44) 50mm.

1

HTA-CE Channels

2

HZA Channels

3

HGB Channels

4

HTU Channels

5

Roof and Wall

6

Curtain Wall

7

HALFEN HZS Bolts

Available HALFEN HZS Bolts

HALFEN Bolt, serrated

- The serration also ensures a positive load transmission in the longitudinal channel direction. The danger of bolt slippage is minimized.
- The bolt is marked on the shaft end with **2 notches**.

HALFEN A4-70 HALFEN 8.8 HALFEN FA 70

	1170							_	
Suitable	HZA 29/20	Н74	38/23	H7Δ	53/34	H7A	64/44	Η7Δ /	11/22
for profile			20/23		NZA 35/34		CA/AA	112/1 41/22	
BOIL	HZS 29/20	HZ5	38/23	HZS :	53/34	HZS 64/44		HZS 41/22	
Bolts dimensions		29						AL W	
Ø I [mm]	M12	M12	M16	M16	M20	M20	M24	M12	M16
30	GVs8.8	GVs8.8							
35								A4-50 FV8.8	
40	GVs8.8	GVs8.8	GVs8.8						
50	FV8.8* GVs8.8	FV8.8* GVs8.8	GVs8.8					A4-50 FV8.8	A4-50 FV8.8
60	GVs8.8	GVs8.8	A4-70 FV8.8 GVs8.8	A4-70 FV8.8* GVs8.8					
65					FV8.8* A4-70 GVs8.8				
80	GVs8.8	GVs8.8	A4-70 FV8.8* GVs8.8	FV8.8*	FV8.8*	A4-70* FV8.8* GVs8.8*	A4-70* GVs8.8*	A4-50	
100		GVs8.8	GVs8.8	A4-70 FV8.8* GVs8.8	A4-70 GVs8.8		FV8.8*		FV8.8
125						A4-70* GVs8.8*			
150			GVs8.8				A4-70* GVs8.8*		
*on request									

1

HTA-CE Channels

2

HZA Channels

4

7

Calculation

HZA DYNAGRIP Design resistance calculation value F_{Rd}

① The allowable loads for C20/25 may be reduced by the factor 0.7 when anchoring in concrete, strength class C12/15 and by a factor of 0.67 when anchored in light dense concrete ≥ LC 25/28, expanded clay or slate or pumice concrete.

 $\ensuremath{\textcircled{}}$ Interim values may be linearly interpolated.

HZA Design resistance calculation value F_{Rd}

s = Anchor spacing, see page 35

s = Anchor spacing, see page 35

4

Dimensioning

1

HTA-CE Channels

2

HZA Channels

3

HGB Channels

4

HTU Channels

5

and Wall

Roof

Minimum spacing a_r, a_e, a_a, a_f and h

The minimum spacing specified in the table applies to reinforced standard weight concrete of all strength classes \geq C20/25.

There are no additional requirements for reinforcement if spacing is increased by 30%.

 \bigcirc Minimum component width b = 2 × a_r applies for single channel configuration. For transverse and angled tensile load the distance from the edge of the

② Determined by channel height, anchor length and required concrete cover "c_{nom}" as stated in EN 1992-1-1 (EC2), chapter 4.4.1. Channel height h_{inst} in brackets for HZA 38/23 apply only for channel types with weld-on anchor.

③ Only for centric tensile stress, and for HZA 41/22 also if exposed to stress in channel longitudinal direction. ⁽³⁾ For transverse and angled tensile load the distance from the edge of the unstressed component may be reduced to $a_r red.= 0.5 \times a_r$ or 50 mm if, as in the illustration on page 36, additional reinforcement is used.

⑤ Additional anchor reinforcement must be used for angled tensile load ≤ 45° and transverse tensile stress perpendicular to the edge for spacings of 75 to 100 mm, see page 36.

Torque values for HALFEN Bolts

Torque values [Nm]									
Bolt type Material / Grade	HZS 64/44	HZS 64/44	HZS 53/34	HZS 53/34	HZS 41/22	HZS 41/22	HZS 38/23	HZS 38/23	HZS 29/20
Thread	0.0		0.0		0.0	74.50	0.0		0.0
M12	-	-	-	-	50	50	80	-	80
M16	-	-	200	200	120	80	120	120	-
M20	350	350	350	350	-	-	-	-	-
M24	450	450	-	-	-	-	-	-	-

Torque values apply only for bolts in delivery condition (unlubricated).

HALFEN Bolts: Dimensioning / HALFEN HZA Channels: Standard Lengths

HALFEN Bolts HZS – Load capacity and bending moment

Bolts type HZS – Design values F _{Rd} and M _{Rd} ①									
	Grad	le 8.8	Stainless steel	A4-50, HCR-50	Stainless s	teel A4-70			
		Bending moment per bolt ②		Bending moment per bolt ②		Bending moment per bolt ②			
Bolt type	F _{Rd} [kN]	M _{Rd} [Nm]	F _{Rd} [kN]	M _{Rd} [Nm]	F _{Rd} [kN]	M _{Rd} [Nm]			
29/20 - M12	27.2	61.2	-	-	-	-			
38/23 - M12	27.2	61.2	-	-	-	-			
38/23 - M16	50.5	155.4	-	-	33.0	116.6			
41/22 - M12	27.2	61.2	13.0	21.4	-	-			
41/22 - M16	50.5	155.4	24.2	54.3	-	-			
53/34 - M16	50.5	155.4	-	-	33.0	116.6			
53/34 - M20	79.0	303.0	-	-	51.5	227.2			
64/44 - M20	79.0	303.0	-	-	51.5	227.2			
64/44 - M24	113.7	524.0	-	-	54.3	183.4			

① Observe profile load bearing capacity! If the load bearing capacity of the bolt and the HALFEN Cast-in channel differ; use the smaller of both values. ② Bending moment in the profile or concrete edge; see note below if bending with additional centric or diagonal tensile stress occurs.

Variable bending stress:

For façades renders subjected to variable stress conditions (e.g. due to temperature change), the alternating stress amplitude must not exceed a value of $\sigma_A = \pm 50 \text{ N/mm}^2$ (γ =1.0) with a mean value of σ_M (relative to the stressed cross section of the bolt).

$N_{Ed} \le F_{Rd} \times (1 - M_{Ed} / M_{Rd})$

- F_{Rd} = Bolt design load capacity
- M_{Rd} = Design value of possible bending moment
- N_{Ed} = Design value of present tensile load
- M_{Ed} = Design value of present bending moment

Note:

Combine stress values if bending occurs with additional centric or diagonal tensile stress.

HALFEN HZA Channels – Standard lengths and Anchor positions

Standard lengths – Project related orders								
	HZA 38/23, 41/2	22, 53/34, 64/44						
	Length [mm] / N	umber of anchors						
1050 /5	1300 /6	1550 /7	1800 /8					
2050/9	2300 /10	2550/11	2800 /12					
3030 /13	3300 /14	3550 /15	3800 /16					
4050 /17	4300 / 18	4550 / 19	4800 /20					
5050 /21	5300 /22	5550 /23	5800 /24					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
	[<u></u>]							

Standard lengths – Project related orders					
HZA 29/20 Length [mm] / Number of anchors					
1250 /7	1450 /8	1650 /9	1850 /10		
2050 /11	2250 /12	2450 /13	2650 /14		
2850 /15	3030 /16	3250 /17	3450 /18		
3650 /19	3850 /20	4050 /21	4250 /22		
4450 /23	4650 /24	4850 /25	5050 /26		
5250 /27	5450 /28	5650 /29	5850 /30		
25 <u>200</u> <u>n × 200</u> 2520 200 200 200 25					

See HALFEN Price list for standard product range (short channels etc.)

4

7

Accessories

6

HALFENSCHIENEN HZA

Dimensioning

Reduced edge distance \mathbf{a}_{r} , with full centrical tensile stress

Figure 1: additional reinforcement

Preconditions for reducing the edge distance to 50 mm

Where minimum structural spacing cannot be maintained when installing HALFEN Channels, **HZA 41/22, 29/20** and **38/23**, for example, in thin façade panels, the distance to the edge a_r may

Required reinforcement cross section A_S [cm²] stirrup rebar:

req. A_s =
$$\frac{F_{Rd} [kN]}{4 \times \sigma_{Rd} [kN/cm^2]} = \frac{F_{Rd}}{44.8} cm^2$$

be reduced to 50 mm, if additional anchor reinforcement as shown in figure 1 is used for the anchor loads and tensile splitting.

Steel stress

$$\label{eq:stars} \begin{split} \sigma_{Rd} &= (1.4\times\sigma_S) = \textbf{11.2 kN/cm^2} \\ \text{with } \sigma_S &= 8 \, k\text{N/cm^2} \text{ as in the approval.} \\ \text{Approval no. Z-21.4-145 (HZA),} \\ \text{Z-21.4-1691 (HZA DYNAGRIP)} \\ \text{for this example.} \end{split}$$

d_br

Required stirrup dimensions					
Dusfiles	stirrup dimensions [mm]				
Profiles	L	ds	d _{br}		
HZA 29/20, 41/22	250	6	24		
HZA 38/23	250	8	32		

Additional reinforcement for HZA 41/22 with edge distance ≥ 75 mm and < 100 mm

$$\begin{array}{l} \mbox{req.} A_{S} = \ \frac{F_{Rd} \ [kN]}{\sigma_{Rd} \ [kN/cm^{2}]} \ = \ \frac{F_{Rd}}{11.2} \ cm^{2} \\ \sigma_{Rd} \rightarrow \mbox{see above} \end{array}$$

Section A - A

Figure 2: Additional reinforcement placement

Additional reinforcement for edge distance for HALFEN Channels HZA 41/22 from 75 mm $\leq a_r < 100$ mm and loads perpendicular to the edge (figure 2).

1

HTA-CE Channels

2

HZA Channels

3

HGB Channels

5

Roof and Wall
HALFEN CAST-IN CHANNELS HZA AND HTA

Dynamic Loading

Dynamic loads for hot-rolled HALFEN Cast-in channels

The stress amplitudes shown here only apply to anchor channels made of the specified material and with the specified anchor types. Only the corresponding screws according to the tables on this page are allowed.

Allowable amplitude / HALFEN HZA Channels, serrated

Allowable stress amplitude for load cycle $n = 2 \times 10^{6}$							
Profile, anchor configuration ①	Material	Approved bolts					
29/20-B6, 29/20-Q	1.0044	2.0	M 12				
38/23-B6, 38/23-Q	1.0044	3.0					
	1.4404/1.4571	2.4	M 16				
	1.0044	6.0/(12 [®])					
53/34-B6, 53/34-Q	1.4404/1.4571	4.0/(10 [©])	M 16, 20				
	1.0044	15.0 ^②	M20 24				
64/44-Q/L [©]	1.4404/1.4571	11.0 ^②	M20, 24				

① Anchor configuration:

B6: with bolt anchor

Q: with I -anchor welded transverse to the channel Also refer to approvals Z-21.4-1691

② values apply for anchor channels with weld-on anchors type I 140/7.1 with anchor orientation Q (crosswise), weld joint position L (lengthwise)

Design resistance / HALFEN HTA Channels

Design resistance for $n = 2 \times 10^{\circ}$ load cycles								
Profile HTA	Туре	$\Delta N_{Rd,s,0,n}$	Allowable bolts	Material				
40/22P	FV	3.0	M12 M16	8.8 4.6 / 8.8				
50/30P	FV	3.6	M16 M20	4.6 / 8.8 4.6 / 8.8				
52/34	FV	6.1	M16 M20	8.8 8.8				

Example (also see diagram to the right):

Profile HTA-CE 52/34 - FV (standard, hot-dip galvanized), for $n = 2 \times 10^{6}$ load cycles:

 $N_{Rd} = 55 \div 1.8 = 30.6$ (taken from the ETA)

 N_{Ed} from permanent load = 10 kN (assumption)

 $\Delta N_{Rd,E,n} = (30.6 - 10) \times 6.1/30.6 = 4.1 \text{ kN}$

Example:

HZA 38/23 profile - FV (standard, hot-dip galvanized), channel length = 250 mm

12 kN (allow. F = $\frac{16.8 \text{ kN} \rightarrow \text{page } 33}{1.4}$) of which dynamic load:

3 kN (stress amplitude Δ F)

Diagram: HTA-CE 52/34 - FV for $n = 2 \times 10^6$ load cycles

HZA Channels

F_{Rd}

1.4

HGB Handrail Connections

The advantages at a glance

Construction specialists consider the HALFEN HGB Handrail connections to be particularly well suited for fastening banisters to the thin front faces of balcony slabs.

Fast and cost-effective

• adjustable anchorage

- can also be used in slabs as thin as $h \ge 100 \text{ mm}$
- installed with bolts instead of welding or drilling
- pre-planning reduces on-site construction time
- all attached components remain fully adjustable or are easily replaced as required

- statically verified installation
- no damage to visible surfaces of concrete slabs
- also suitable to secure mandatory safety rails during construction (Refer to: EN 795 "Guard rails")
- use with HALFEN high-strength bolts to ensure a secure and statically sound connection of banister components

HGB Channels

4

HTU Channels

5

and Wall

Roof

6

1

HTA-CE Channels

Application Examples

SAFETY BARRIERS IN STADIUMS

1-4: Safety rail installation, multi purpose arena in Berlin

Fixing of safety rails, Rheinenergiestadion Cologne

RAILINGS

Used to secure safety rails during the construction phase

Fixing of safety rails, Rheinenergiestadion Cologne

Cast-in HGB Channel, residential building

General

Regulatory requirements

Balconies are part of the structural system. "They must be designed, constructed, maintained and modified in such a fashion that public order and safety, especially to health or life, is not endangered". (MBO = Musterbauordnung / model building code 07 and construction guidelines).

Technical guidelines issued by public notice as technical building regulations must be observed.*

Technical rules provide information on load parameters, calculation, dimensioning of structural products, construction types, structural layouts etc. A requirement of regional building codes refers to structural stability: "All structures must, as a whole and in its individual components, be structurally self-supporting". This stability must be statically verifiable based on current technical standards.

A further building regulation addresses traffic loads, for example: Balconies and loggias must be fitted with safety rails to prevent falls when they border on to an area with a drop of more than one metre. For a drop height up to 12 m the minimum banister height is 0.90 m measured from the upper surface of the finished floor surface or accessible ledge. For drop heights greater than 12 m the banister height must be at least 1.10 m. For exceptions see the German Federal building regulations / Deutsche LandesBauOrdnung.

Other regulations, not covered here, address the design, dimensioning, required spacings in the guard rail design, fire protection, thermal/sound insulation and rainwater drainage. *through the highest construction supervision authorities of the German Federal States

Regulations, standards and directives (to be observed when designing safety rails)

Regional Building Codes	§
VOB - Part B, § 4, execution of construction:	§
BVM Directive	
Other applicable regulations and standards (Extract):	§

Individual regional states have their own building codes and regulations. All current technical regulations require proof of structural safety and integrity. A static calculation or a building authority certificate is required when designing and dimensioning the fixings for guard rails.

§ 4.2 (1) It is the contractor's responsibility to provide the static documentation in accordance with the contract. He has to observe the recognized standards of practice as well as with the provisions of the law and regulatory directives. VOB (Vergabe- und Vertragsordnung für Bauleistungen/Tender and Contract Regulations for the German building industry) Part B, § 4.3, requires the contractor to report to the customer, in writing, any obvious design flaws, which he as the expert must be able to recognize. He alone is responsible for any resulting defect and consequential expenses. If he has satisfied his reporting obligation, the responsibility for the defect passes to the customer (defect example: banister attachment mounted in too thin a concrete slab).

Directive on metal banisters/balustrades, published by the: BVM Berufsverband Metall / Federal Association of German Metalworkers.

- Accident Prevention Regulation "General Provisions" (VGB 1)
- Industrial Safety Regulations
- ETB Directive "Fall Prevention Installations", 1985 Issue
- Stainless Steels, EC3 part 1–4

EN 1992-1-1 (EC2):	Design and construction of concrete support structures;
	with National Annex (NA)
EN 1991 (EC1):	General effects on load structures;
	with National Annex (NA)
EN 1993 (EC3):	design and construction of steel structures;
	with National Annex (NA)

1

HTA-CE Channels

7

Accessories

Materials / Corrosion Protection

Stainless Steel A4:

Chromium is the most important alloy element in stainless steel. A specific chromium concentration ensures the generation of a passive layer on the surface of the steel that protects the base material against corrosion. This explains the high corrosion resistance of stainless steel.

"Anchor channels in stainless steel may be used outdoors – also in an industrial and coastal environment, but may not be directly exposed to salt water".

See guidelines for "Metal banisters and balustrades" issued by the BVM (Bundesverband der Metallverarbeiter) (German Association of Metalworkers).

HALFEN Cast-in channels, stai	inless steel				
		Description		Stainless steel	
			Materials	Standard	Corrosion resistance class according to EN 1993-1-4, table A.3
		Channel profile	1.4404 or 1.4571	EN 10 088	Ш
	•	Ribbed-head anchor	Reinforcing steel B500B Reinforcing steel BSt 500 NR	DIN 488	
HALFEN Bolts, stainless steel					
		Description		Stainless steel	
		Description	Materials	Stainless steel Standard	Corrosion resistance class according to EN 1993-1-4, table A.3
		Description Bolt	Materials A4-70: 1.4404 or 1.4571	Stainless steel Standard EN 3506-1 and EN 10 088	Corrosion resistance class according to EN 1993-1-4, table A.3
		Description Bolt Hexagonal nut	Materials A4-70: 1.4404 or 1.4571 ■ A4-70: 1.4404 or 1.4571 ■	Stainless steelStandardEN 3506-1 and EN 10 088EN 3506-2 and EN 10 088	Corrosion resistance class according to EN 1993-1-4, table A.3 III
		Description Bolt Hexagonal nut Washer	Materials A4-70: 1.4404 or 1.4571 • A4-70: 1.4404 or 1.4571 • A4-70: 1.4404 or 1.4571 •	Stainless steelStandardEN 3506-1 and EN 10 088EN 3506-2 and EN 10 088EN 10 088	Corrosion resistance class according to EN 1993-1-4, table A.3 III III III

□ WB = Steel mill finish

A4 = Stainless steel

Galvanized:

Dipped in a galvanizing bath at a temperature of approximately 460°C, a method used primarily for open-profile channels.

Galvanized material for interior, dry rooms, for instance when installing staircase banisters in residential buildings, schools or commercial retail stores.

Available on request

Identification of HALFEN HGB Cast-in channels

Product identification

- on channel side
- additionally inside the profile

1

Accessories

Installation / Assembly

Nail the HALFEN Cast-in channel to the formwork

Where possible, use stainless steel nails to avoid corrosion. After striking the formwork remove the foam filler from the HALFEN Cast-in channels.

2 Installation and adjustment of balustrades

3 Tighten the bolts

Tighten the nuts using a torque wrench. See table on the right for torque values

Nail the HALFEN Cast-in channel to the formwork

Railing bolts					
Stainless steel Material grade A4-70	Torque [Nm]				
HGB - M 50/30		M16	60		
for profile 49/30 and 54/33		M12	25		
HGB - M 40/22		M16	45		
for profile 40/25		M12	25		
HGB - M38/17	8	M16	40		
for profile 38/17		M12	25		

Fixing position of the bolts

Short piece

1

4

6

Curtain Wall

Product Range

Item description	Dimensions HGB-E [mm] Dimensions HGB-EE [mm]				mm]	HALFEN HGB Bolts				
Like	d _A		A A A A A A A A A A A A A A A A A A A							
	I	d _A	h _A	Weight kg/each G	l ₁ / l ₂	dA	h _A	Weight kg/each G	Type / FK	Dimensions
HGB E - 54/33-A4 □	100			1.071						M12×40
B500B (BSt 500 S)	150	14	200	1.307	170/170 14	14	14 250	50 2.262	HGB M-50/30 A4-70	M12×40
	200			1.543						
HGB E - 49/30-A4	100		110	0.704	170/170 14	14 150			M12×40	
	150	12		0.855			150	150 1.501	HGB M-50/30 A4-70	M16×50
	200			1.007						
HGB E - 40/25-A4	100			0.611			14 90	90 1.042 HGB M-4 A4-7		M12×40
	150	10	90	0.717	170/170 14	14			HGB M-40/22 A4-70	M16×40
	200			0.822						
HGB E - 38/17-A4	100			0.824		12	2 201	1.214		M12×40
	150	150 10	201	0.911	170/170				HGB M-38/17 A4-70	M12~40
	200			0.999						10.10.40

A4 = Stainless steel 1.4571/1.4404

Alternative for interiors

(on request): ■ **FV** = Steel hot-dip galvanized 1.0038/1.0044 In addition to the cold-rolled profiles listed in the table above the following hot-rolled profiles are also generally available:

- 40/22
- 50/30
- 52/34

Ordering and materials

Ordering example banister bolt:

(!)

1

HTA-CE Channels

2

HZA Channels

3

HGB Channels

4

HTU Channels

5

Roof and Wall

6

Curtain Wall

7

Accessories

The minimum height h_b of a banister is 0.90 m from the top surface of the finished floor or accessible ledge to the upper edge of the rail. For drop heights of more than 12.0 m the banister must be at least 1.10 m in height. (Exceptions; as specified in regional building codes)

It would be advisable to have one uniform minimum height of 1.00 m as has already been mandated in the commercial sector and in a number of European countries.

Balcony slab

Anchor channels or dowel installations require concrete of at least C 20/25 grade. If the concrete grade is less than C 20/25 grade or it is unknown a case-by-case decision must be made.

The thickness of the balcony slab must be at least h = 100 - 150 mm when the HGB is mounted in the slab edge (depends on channel profile and according to German HGB approval). Other types of installation and systems require a thicker slab. All weather-exposed concrete-embedded installations (e.g. for balconies) must be made of stainless steel.

b = clear distance between the back of the veneer and the front face of the balcony slab or gutter / kick plate

Spacings

Any structural design must take all basic requirements for railings and banisters into account. As a general rule, all railings and banisters must be designed so that personal injury is ruled out, for instance with correct spacing of rails, lattice bars or panels. They should also be designed so as not to entice but instead to discourage anyone from climbing over. The specific requirements for guard rail design are determined by the intended use (residential, public, commercial) and the drop height involved. Also observe the building codes of each country or region, the ETB guidelines "Fall Protection Components" and DIN 18065 (Stairs in Buildings – definition, rules, key measurements) and guard rail regulation applicable at the construction site. In Germany these are the "Geländer-Richtlinie 2012 (BVM Berufsverband Metall)", Federal Association of German Metalworkers.

- ① clear distance between bottom edge of hand rail and top edge of facing / lower structure
- ② clear distance between the top edge of the finished floor and the bottom edge of the facing / lower structure
- ③ axis spacing between posts
- ④ clear distance between horizontal facings
- (5) clear distance between vertical facings

HTA-CE Channels

2

and Wall

Roof

Dimensioning

Dimensions

The forces acting on the banister must be transferred into the main building structure. It is necessary to verify that the forces

- a) are wholly supported by the banister and
- b) can be transferred via the connecting elements into the balcony slab.

$$N_{Ed} = \frac{M_{Ed}}{(e - 0.41 \cdot x)} + H_{Ed}$$

 N_{Ed} = tensile force on the anchor

е = distance between channel axis and outer edge of the banister base plate

= maximum concrete pressure zone level according to appendix 8, table 8a and 8b х

Banister heights						
Drop height	Minimum height of rails (recommended)	Note				
Less than 12 m	90 cm (100 cm)	Relevant regional building regulations and if necessary other				
Greater than 12 m	110 cm	regulations e.g. for civil constructions must be observed.				

Calculation

 Banister load h according to EN 1991-1-1/NA Table 6.12 DE "Calculation must assume 100% traffic load in drop direction and 50% of traffic load (but not less than 0.5 kN/m) in the opposite direction." 		for example: residential buildings and communal areas with low foot traffic	$q_k = 0.5 kN/m$
		for example: rooms for mass assembly, commercial sales spaces, corridors	$q_k = 1.0 kN/m$
		for example: areas with large gather- ings of people, factories, workshops	$q_k = 2.0 kN/m$
2. Vertical loads v according to BVM guidelines Load assumptions to calculate vertical loads		from dead weight of structure including any renders	$v_1 = 0.40 kN/m$
are according to the BVM guidelines for guard		from window box	$v_2 = 0.35 kN/m$
		support capacity	$v_3 = 0.15 kN/m$
3. Wind loads F _w according to EN 1991-1-4 and EN 1991-1-4/NA		Velocity force q in kN/m^2 and and total wind pressure F_w are calculated	l according to

Roof and Wall

6

1

HTA-CE Channels

2

HZA Channels

3

HGB Channels

4

Accessories

EN 1991-1-4 with EN 1991-1-4/NA.

Dimensioning

Extract from HGB approval Z-21.4-1912, page 6

3.2.2 Actions and required verifications

The actions H_{Ed} , V_{Ed} , M_{Ed} and N_{Ed} have to be determined according to the calculation basics as in appendix 7. The ratio in the design calculation between horizontal action and bending moment is limited to:

 $\frac{H_{Ed}}{M_{Ed}} \le 1.5 [1/m] \qquad H_{Ed} [kN]; M_{Ed} in [kNm]$

It has to be verified that the design action value E_d does not exceed the design resistance value R_d :

$E_d \le R_d$	see table 3.1 and 3.2 below
Ed	= Design action value (N _{Ed} , V _{Ed} , M _{Ed})
R _d	= Design resistance value (N_{Rd} , V_{Rd} , M_{Rd})

For a standard case the following equation for the design action value applies (permanent load and variable load acting in the same direction):

Ed	$= \gamma_{G} \cdot G_{k} + \gamma_{Q} \cdot Q_{k}$
G _k ; Q _k	= characteristic value of permanent load or variable load according to
	recognized standards for load assumptions
Yg; Yq	= partial safety factors for permanent and variable action

Extract from HGB approval Z-21.4-1912, page 7

Table 3.1 Required verifications for tensile loads							
Steel failure							
Pull out failure	N _{Ed}	≤ N _{Rd,s}					
Concrete failure with anchor reinforcement		\leq N _{Rd,s,s} (for single-bolt fixing) \leq 2 N _{Rd,s,s} (for two-bolt fixing)					
Spalling							

Table 3.2 Required verifications for shear loads			
Steel failure	V _{Ed}	≤ V _{Rd,s}	
Concrete failure with anchor reinforcement		≤ V _{Rd,s,s} (for single-bolt fixing) ≤ 2 V _{Rd,s,s} (for two-bolts fixing)	
Concrete edge failure with anchor		$V_{Ed} \le V_{Rd,c}$	
reinforcement		$M_{Ed} \le M_{Rd,c}$	

With combined loads the following interactions must be verified:

1. max. $(N_{Ed} / N_{Rd,s})^2 + max. (V_{Ed} / V_{Rd,s})^2 \le 1.0$ or max. $(N_{Ed} / N_{Rd,s}) + max. (V_{Ed} / V_{Rd,s}) \le 1.2$

2. $M_{Ed} / M_{Rd,c} + 1.5 V_{Ed} / V_{Rd,c} \le 1.5$

for $0.333 \le V_{Ed} / V_{Rd,c} \le 1.0$

6

Curtain Wall

5

Dimensioning

Extract from HGB-approval Z-21.4-1912, appendix 6

Table 6: Installation and anchor pa	arameters				
Anchor channels profiles					
Description	Illustration	38/17	40/22 40/25	50/30 49/30	52/34 54/33
A) Profile shape and bolt positioni	ng				
Minimum channel length required for a two-bolt fixing [mm]	appendix 2	150	150	150	150
Minimum bolt distance p [mm]	see next page	80	80	80 (100) ①	80 (100) ①
B) Building element dimensions an	d anchor position in the elem	nent			
Minimum thickness of concrete element h [mm]	appendix 8	100	120	140	150
Minimum edge distance c_1 [mm] (channel axis to the upper and the lower edge of the concrete element)	appendix 8	50	60	70	75
Minimum distance a _e [mm] to edge of concrete element (from end of channel)	see next page	40	45	50	50
C) Size and position of anchor plat	te				
Minimum distance e [mm] from channel axis to the upper and the lower edge of the anchor plate		30	30	35	37.5
Minimum distance a_1 [mm] from the upper and lower edge of the anchor plate to the upper and lower edge of the concrete component $@$		10	10	10	10
Minimum distance a ₂ [mm] from the outer edge of the anchor plate to the edge of the concrete component		40	45	45	45

0 The values in brackets apply when using M20 bolts 0 In components with a weather groove, the bottom of the groove is regarded as the concrete element edge

1

HTA-CE Channels

2

HZA Channels

3

HGB Channels

4

HTU Channels

5

Roof and Wall

6

Curtain Wall

7

Accessories

Dimensioning

Extract; HGB approval Z-21.4-1912, appendix 6

Table 7: Size and position of required minimum reinforcement							
	Anchor channels						
Description	38/17	40/22 40/25	50/30 49/30	52/34 54/33			
Stirrup / Quantity	3 Ø 8 I _b = 200 mm	3 Ø 8 I _b = 250 mm	3 Ø 10 I _b = 300 mm	3 Ø 12 I _b = 400 mm			
Edge rebar, top and bottom [mm]	Ø 8	Ø 8	Ø 10	Ø 12			

1

HTA-CE Channels

5

Required minimum reinforcement:

One stirrup is placed centrally between the channel anchors and one stirrup directly next to each anchor at the channel ends (if positioned near to the edge, between the anchor and component edge).

Extract; HGB approval Z-21.4-1912, appendix 8

M20						
49.0						
30.7						
42.8						
91.7						
Shear						
35.2						
78.4						
30.9						
56.0						

* Values also apply for all stainless steels of strength class 70 (see also HGB approval, appendix 4) Design resistance of concrete pressure zone

$$M_{Rd,c} = 0.81 \cdot x \cdot b \cdot \frac{f_{ck}}{\gamma_{Mc}} \cdot (e - 0.41 \cdot x)$$

where:

- x = maximum height; concrete pressure zone (see table 8a and 8b)
- b = width of pressure zone = width of anchor plate b_p
- $\begin{array}{l} f_{ck} & = \mbox{ characteristic compression strength of concrete in} \\ & \mbox{ accordance with EN 206-1:2001-07,} \\ & \mbox{ for concrete strength } \geq C30/37 \mbox{ only calculate using} \\ & \mbox{ } f_{ck} = 30 \mbox{ N/mm}^2 \end{array}$
- e = distance between anchor channel axis and outer edge of the anchor plate (see illustration on page 47, table 6)
- γ_{Mc} = 1.5 (partial safety factor)

Dimensioning

Extract, HGB-approval Z-21.4-1912, appendix 8

Table 8a: Design resistance of the channel using single-bolt fixing

Chann	nel type	38/17	40/25	40/22	49/30	50/30	54/33	52/34
Minimum compone	thickness of nt h [mm]	100	120		140		150	
Steel failure (single-bolt fixing)								
Tension	N _{Rd,s} [kN]	10.0	11.1		17.2		30.6	
Shear	V _{Rd,s} [kN]	10.0	11.1	14.4	17.2	23.4	30.6	39.7
Concrete failure (single-bolt fixing)								
V _{Rd,c}	[kN]	6.7	9.0 11.7		12	2.7		
Maximum concrete pre	n height of essure zone x	0.25 · e ^①	0.25 · e ^①		0.30 · e ^①		0.40	• e ^①

T-bl- Ob-	Destant		- 6 + 1	I		Access to a late	£
lable xb.	Design	resistance	or the c	nennei	iising a		nying
Tubic ob.	DOJISII	resistance		nunici	using u		

Pro	ofile	38/17	40/25	40/22	49/30	50/30	54/33	52/34
Minimum compone	thickness of nt h [mm]	100	120		140		150	
Steel failure (two-bolt fixing)								
Tension	N _{Rd,s} [kN]	15.0	16.7		25.8		45.8	
Shear	V _{Rd,s} [kN]	15.0	16.7	21.6	25.8	35.1	45.8	59.6
Concrete failure (two-bolt fixing)								
V _{Rd,d}	[kN]	6.7	9.0 11.7 12.		2.7			
Maximun concrete pre	n height of essure zone x	0.25 · e ^①	0.25 · e ^①		0.30 · e ^①		0.40 · e ^①	

O e = distance between anchor channel axis and outer edges of the anchor plate. For asymmetrical anchor plates the smallest distance to the outer edge of the anchor plate is used for calculation.

Dimensioning example HALFEN HGB Guard rail fittings

M _{ed}	 used to calculate applicable moment relative to the channel axis
e _{V1} , e _{V2} , e _{V3}	= distance of the vertical loads to the front edge of the channel
e _{h1} , e _{Fw}	= distance of the horizontal loads to the front edge of the channel
H _{Ed}	= used to calculate the applicable horizontal effect
V _{Ed}	= used to calculate the applicable vertical effect
h, F _w	= horizontal load effects
v ₁ , v ₂ , v ₃	= vertical load effects
b _p , h _p	= anchor plate width and height

C HTA-CE Channels

Calculation example

Calculation example

Post spacing	1.5 m	
Post height from FFL	1.0 m	
Structure height	9.0 m < 25.0 m	
Banister load	0.5 kN/m (reside	ntial buildings)
Concrete slab thickness	180 mm	
Distance channel axis to comp	oonent edge	c ₁ = 90 mm
Width of banister anchor plat	e	$b_{p} = 150 mm$

Height of banister anchor plate $h_p = 150 \text{ mm}$ Bolt spacing p = 80 mm

Concrete strength

Load

Vertical loads:

Dead load, banister including siding	$v_1 = 0.40 \text{kN/m}$
Dead load, flower box	$v_2 = 0.35 kN/m$
Vertical traffic load on the banister	$v_3 = 0.15 kN/m$

C30/37

Horizontal loads:

Banister load	h = 0.50 kN/m
Wind force	$q = 0.50 kN/m^2$
	(according to EN 1991-1-4 NA.B.3)
/	

(assumption: building height 9.0 m < 10:0 m, not susceptible to resonance frequency, inland wind zone 1)

Cantilevers:

$e_{h1} = 1.0 + 0.06 + \frac{0.18}{2} = 1.15 \mathrm{m}$
$e_{Fw} = \frac{(1.15 + 0.075)}{2} - 0.075 = 0.53 \mathrm{m}$
$e_{v1} = 0.10 m$
$e_{v2} = 0.20 \mathrm{m}$
$e_{v3} = 0.10 \mathrm{m}$

0 10

Wind load bearing zone:

A = $(1.00 + 0.06 + \frac{0.18}{2} + \frac{0.15}{2}) \cdot 1.5 = 1.84 \,\text{m}^2$

External pressure coefficient (acc. table 7.1 EN 1991-1-4): h/d = 1, area B $c_{pe,1} = -1.1$ (wind-suction)

 $c_{pe,10} = -0.8 \text{ (wind-suction)}$ according to EN 1991-1-4 chapter 7.2.1the following is valid: $1 \text{ m}^2 < A \le 10 \text{ m}^2$ $c_{pe} = c_{pe,1} + (c_{pe,10} - c_{pe,1}) \cdot \lg A = -1.1 + (-0.8 + 1.1) \cdot \lg 1.84 = -1.02$

Wind suction: $F_w = c_{pe} \cdot q \cdot A = -1.02 \cdot 0.50 \cdot 1.84 = -0.94 \text{ kN}$

Action per support:

Wind load	$F_{w,Ed} = -0.94 \cdot 1.5 = -1.41 \text{kN} \text{ (Suction)}$ with $\gamma_F = 1.5$
Banister	$H_{Ed} = 0.5 \cdot 1.5 \cdot 1.5 = 1.13 \text{ kN}$ with $\gamma_F = 1.5$
Dead load banister	$V_{1Ed} = 0.40 \cdot 1.5 \cdot 1.35 = 0.81 \text{ kN}$ with $\gamma_F = 1.35$
Load from flower box	$V_{2Ed} = 0.35 \cdot 1.5 \cdot 1.35 = 0.71 kN \label{eq:V2Ed}$ with $\gamma_F = 1.35$
Vertical load on banister	$V_{3Ed} = 0.15 \cdot 1.5 \cdot 1.5 = 0.34 \text{ kN}$ with $\gamma_F = 1.5$

Determining bearing reactions H_{Ed} , V_{Ed} and M_{Ed}

Not classed as an utility (escape) balcony therefore combination with wind load is not required.

Load case 1: V + banister load

$$\begin{split} M_{Ed} &= 0.81 \cdot 0.10 + 0.71 \cdot 0.20 + 0.34 \cdot 0.10 + 1.13 \cdot 1.15 \\ &= \textbf{1.56 kNm} \\ V_{Ed} &= 0.81 + 0.71 + 0.34 = \textbf{1.86 kN} \\ H_{Ed} &= \textbf{1.13 kN} \end{split}$$

Load case 2: V + wind $M_{Ed} = 0.81 \cdot 0.10 + 0.71 \cdot 0.20 + 1.41 \cdot 0.53 = 0.97 \text{ kNm}$ $V_{Ed} = 0.81 + 0.71 = 1.52 \text{ kN}$ $H_{Ed} = 1.41 \text{ kN}$

Selected:

HGB-E 49/30, I = 200 mm, stainless steel A4 Bolt spacing p = 80 mm 2 bolts HGB-M 50/30 M12, A4-70, Required minimum reinforcement: Stirrups 3 Ø 10, I_b = 300 mm (see page 48 approval \rightarrow app. 6, table 7), Edge rebar 2 Ø 10

Splitting the moment into a load pair

 $N_{Ed} = \frac{M_{Ed}}{(e - 0.41 \cdot x)} + H_{Ed}$ (see approval Z-21.4.1912 appendix 7) $e = \frac{h_p}{2} = 75 \text{ mm}$

 $x = 0.30 \cdot e = 0.30 \cdot 75 = 22.5 \text{ mm}$ see page 49 (appendix 8/table 8b) $e - 0.41 \cdot x = 75 - 0.41 \cdot 22.5 = 65.8 \text{ mm}$

5

and Wall

Roof

6

Curtain Wall

7

Accessories

3

HGB Channels

Calculation example

Load case 1: V + banister load

 $N_{Ed} = \frac{1.56 \, kNm}{0.0658 \, m} + 1.13 \, kN = 24.84 \, kN \rightarrow \text{decisive}$

 $V_{Ed} = \textbf{1.86 kN} \rightarrow \textbf{decisive}$

Load case 2: V + wind

 $N_{Ed} = \frac{0.98 \, kNm}{0.0658 \, m} + 1.41 \, kN = 16.30 \, kN$

 $V_{Ed} = 1.52 \, kN$

Verifications

Geometrical boundry conditions according to approval Z-21.4-1912 appendix 6, table 6 have been met.

Verification of steel capacity

Design resistance (steel) channel HGB 49/30 using 2 bolt fixing

 $\begin{array}{ll} N_{Rd,s} = 25.8\,kN & \mbox{ see page 48 (appendix 8, table 8b)} \\ V_{Rd,s} = 25.8\,kN & \end{array}$

Channel, centric pull load

 $\frac{N_{Ed}}{N_{Rd,s}} = \frac{24.84}{25.8} = 0.96 < 1$

Channel, shear load

 $\frac{V_{Ed}}{V_{Rd,s}} = \frac{1.86}{25.8} = 0.07 < 1$

Channel, interaction

$$\left(\frac{N_{Ed}}{N_{Rd,s}}\right)^2 + \left(\frac{V_{Ed}}{V_{Rd,s}}\right)^2 = \left(\frac{24.84}{25.8}\right)^2 + \left(\frac{1.86}{25.8}\right)^2$$
$$= 0.93 + 0.01 = 0.94 < 1$$

 $\label{eq:state} \begin{array}{ll} \mbox{Design resistance (steel) bolt M12, A4-70} \\ N_{Rd,s,s} = 31.6\,kN & see \mbox{ page 48 (appendix 8, tab.9)} \\ V_{Rd,s,s} = 22.7\,kN \end{array}$

Bolt, centric pull load

 $\frac{0.5 \cdot N_{Ed}}{N_{Rd,s,s}} = \frac{0.5 \cdot 24.84}{31.6} = 0.39 < 1$

Bolt, shear load

$$\frac{0.5 \cdot V_{Ed}}{V_{Rd,s,s}} = \frac{0.5 \cdot 1.86}{22.7} = 0.04 < 1$$

Bolt, interaction

$$\left(\frac{0.5 \cdot N_{Ed}}{N_{Rd,s,s}}\right)^2 + \left(\frac{0.5 \cdot V_{Ed}}{V_{Rd,s,s}}\right)^2 = 0.39^2 + 0.04^2 = 0.15 < 1$$

Verification of concrete capacity

Design resistance concrete $V_{Rd,c} = 11.7 \text{ kN}$ see page 49 (appendix 8, table 8b) $M_{Rd,c} = 0.81 \cdot x \cdot b \cdot \frac{f_{ck}}{\gamma_{Mc}} \cdot (e - 0.41 \cdot x)$

 $M_{Rd,c} = 0.81 \cdot 22.5 \cdot 150 \cdot \frac{30}{1.5} \cdot 65.8 = 3597615 \text{ Nmm}$

Concrete edge failure

$$\frac{V_{Ed}}{V_{Rd,c}} = \frac{1.86}{11.7} = 0.16 < 1$$

 $\frac{M_{Ed}}{M_{Rd,c}} = \frac{1.56}{3.60} = 0.43 < 1$

 $\frac{V_{Ed}}{V_{Rd,c}} = 0.16 < 0.333 \rightarrow \text{According to the approval verifica-tion of interaction is not required,}$ see page 46 (approval/page 7).

Verifying the ratio between horizontal action and bending moment

 $\frac{H_{Ed}}{M_{Ed}} = \frac{1.13 \text{ kN}}{1.56 \text{ kNm}} = 0.72 < 1.5$

→ Design model is applicable see page 46 (approval/page 6) 3

6

Curtain Wall

7

Accessories

HALFEN HTU Cast-in channels

The advantages at a glance

The perfect technical solution for attaching trapezoidal steel sheet to concrete. HALFEN HTU Cast-in channels and self-tapping screws have become a standard everyday solution in the construction industry.

Safe and dependable

- optimal shape of the anchoring elements means safe and low slip anchorage
- the polystyrene-filler prevents the drill or self-tapping-screws hitting concrete
- building authority approved

APP. No. 2. 2. A. 84 officially app

HALFEN HTU Cast-in channels Anchor design A_N

Quick and cost-effective

- simple installation
- quick and easy installation of trapezoidal sheeting
- two anchor designs, A_N and D for optimal adapting to planned reinforcement

HALFEN HTU Cast-in channels Anchor design D

1

5

Roof and Wall

6

Curtain Wall

Application Examples

Trapezoidal roof sheet metal attachment

Installing HALFEN HTU Cast-in channels in the front face of a slab

Façade fixed using HALFEN HTU Cast-in channels

Vertical HALFEN HTU Cast-in channels for connecting façade panels

Assembly of trapezoidal sheet metal using self-tapping screws

HALFEN HTU Cast-in channels in a pre-stressed concrete beam

7

Accessories

General, Materials

General

1

HTA-CE Channels

2

HZA Channels

3

HGB Channels

4

The HALFEN Trapezoidal metal sheet installation channels were developed in cooperation with the Association for the light-weight steel construction industry (IFBS *Industrieverband für Bausysteme im Stahlleichtbau*). Made as a C-shaped channel in stainless steel or hot-dip galvanized steel with at least two welded anchors, and approved by the German Institute of Building Technology (DIBt Deutsches Institut für Bautechnik).

Connecting elements between channel and steel trapezoidal profiles must be designed according to IFBS guidelines "Connections for use with constructions made of steel sheet cold profiles" or the relevant manufacturer's ETA (European Technical Approval).

Approval no. Z-14.1-4

Approval no. Z-21.4-84

Material / Corrosion protection

Hot-dip galvanized FV:

Dipped in a galvanising bath at a temperature of approximately 460°C. This method is used primarily for open-profile channels.

HALFEN HTU Cast-in channels, steel hot-dip galvanized								
			Steel					
		Material	Standard	Zinc coating				
	F V	Channel profiles	1.0038	EN 10 025 2	FV: ≥ 50µm			
		Anchor A _N , D		EN 10 025-2				

Connecting elements: Galvanized Steel according to (IFBS) approval no. Z-14.1-4 or the relevant manufacturer's ETA.

Stainless steel A4:

Chromium is the important element in stainless steel. A specific chromium concentration ensures the generation of a passive layer on the surface of the steel that protects the base material against corrosion.

- The result is the high corrosion resistance of stainless steel.
- **FV** = Hot-dip galvanized steel 1.0038
- **A4** = Stainless steel 1.4571/1.4404

Connecting elements: Stainless steel as agreed and contracted from screw suppliers

Installation, Assembly

Installation

The ready-to-install HTU Channel is embedded flush with the final concrete surface. It is advisable to level the concrete surface and to apply a slight slope to the outer edge of the concrete. This is to ensure that the trapezoidal sheet metal rests only on the HTU Channel. According to German approval a heightened installation of up to 5 mm is also possible.

Trapezoidal sheet metal fixing in wall applications

Alternatively, if the trapezoidal sheet metal manufacturer requires a minimal support width larger than 60 mm, this can be achieved through a flush channel installation and a flat concrete surface. Ensure that pre-stressed concrete trusses are properly aligned, centred and absolutely plane. Maintaining a 20 mm gap between individual channel ends is recommended.

Trapezoidal sheet metal fixing in roof applications

Screw placement

Assembly (with self-tapping screw)

- use a power-driver to fix the self-tapping screw; a pilot hole is not required. Even 4-fold overlapping at joints is not a problem with self-tapping screws
- use a power-driver with approximately 1500 rpm and a size 10 socket

Dimensions in mm

Recommended butt joint gap between two channels

- suitable tools for various screws can be obtained from the screw supplier
- the trapezoidal sheet metal must be attached in the central third of the channel back; Screws must be positioned at a minimum distance of 25 mm from the channel ends

1

6

Product Range

1

Roof

6

(Steel 1.0038 1.4404/1.4571, thickness 3 mm) HALFEN for screw-fastening of trapezoidal sheet metal with hexagonal sheet metal or self-tapping screws

APP. 10 L 1.1 A 8A Officially 000

Dimensioning

Table 2 Minimum distance when exploiting maximum load as in table 1								
Profile		Minimum i	nteraxial spa	cing and ed	ge distance			
HTU { 60/22/3 60/22/6	a _a ① [mm]	a _r ② [mm]	a _e ③ [mm]	a _f ④ [mm]	h ⑤ [mm]	b ⑥ [mm]		
Type A _N	200	100	20	20	100 + nom c	200	a _e a _e	
Type D	200	100	20	20	75 + nom c	200	min. b aa ar h	

- ① If the (trapezoidal sheet metal) channels are placed so that the anchors of adjacent channels are offset by at least 200 mm, the axial spacing a_a may be reduced to 80 mm.
- ② If not exploiting the maximum load capacity F_{Ed}, see table above, the edge distance a_r may be reduced. This applies only for central tensile stress N_{Ed}.

 $\begin{array}{l} \mbox{actual } N_{Ed} = \mbox{design rating} \\ \mbox{of actual load} \\ \mbox{max. } F_{Ed} = \mbox{maximum load} \\ \mbox{as in the table above} \end{array}$

The edge distances must not be reduced if transverse stress (V_{xEd} , V_{yEd}) is present.

- $\$ With full exploitation of maximum load F_{Ed} as in the table above, the last anchor must be at least 100 mm from the component edge.
- When fully exploiting maximum load capacity F_{Ed}, see table above, the "last anchors" of adjacent channels must be at least 150 mm apart.
- ⑤ Depends on the anchor's size and the required concrete cover.
- ⑥ Minimum width of building component for a one channel layout.

1

HTA-CE Channels

2

HZA Channels

3

HGB Channels

4

HTU Channels

5

Roof and Wall

6

Curtain Wall

Roof and Wall

The advantages at a glance

•he efficient and established installation systems for timber roof structures, masonry restraints and connectors for concrete façades are proven practical solutions for the construction industry, greatly improving construction time with significant cost-saving.

HALFEN HSF Rafter shoe

Suitable for horizontal forces acting on rafter and collar beam roofs.

HALFEN HNA Timber fixing strap Suitable for all acting loads e.g. wind loads in roof structures.

HALFEN HKZ Restraint ties HALFEN SPV Turnbuckle restraint For connection of tensile and compression loads from concrete walls elements.

HALFEN ML+BL Brick tie anchor system

For connection of tension and compression loads from concrete walls elements.

HALFEN HVL-E Cast-in channel

the bracket).

HALFEN HVL-M Precast connection Suitable for horizontal loads in concrete wall elements (loads perpendicular to

HALFEN HKW Corner guard Wall and column corner protector; application in industry and parking structures.

HTA-CE Channels

Application Examples

HALFEN HSF Rafter shoe 6/12

Airbus paintshop with HALFEN HVL Restraint tie

HALFEN HKZ Restraint tie with serrated washer

HVL-System in precast building components

Connecting construction timbers to concrete using the HNA

Corner guards in an industrial environment

Timber roof construction with HALFEN HNA Fixing straps

HALFEN ML Brick-ties anchor system

1

HTA-CE Channels

2

HZA Channels

3

HGB Channels

4

HALFEN Rafter Shoe HSF

Definition $c_{1,1}$ and $c_{1,2}$ see page 15

In modern wood constructions, rafter shoes type HSF 6/12 are used to support the horizontal forces in rafter and collar tie roofs.

The advantages at a glance:

- minimal planning; simply specify the profile and position of the HALFEN Cast-in channels in the concrete element
- · clear statics with flexible rafter shoes
- complex and therefore costly support structures are not necessary
- simple and unproblematic roof constructions: a) adjustable support plate
 - b) adjustable nailing brackets for vertical anchorage for various rafter widths from 60 to 120 mm
- c) adjustable in longitudinal rafter axis \pm 15 mm
- freely adjustable rafter spacings in the longitudinal axis of the HALFEN Channel without additional measures
- · hot-dip galvanized for excellent corrosion protection

The horizontal forces are transferred into the main concrete structure using (ETA) European Technical approved HALFEN HTA-CE Cast-in channels.

During assembly ensure that the serration in the counter plates engages in the base plate. The marking on the counter plates must be at right angles to the slot in the base plate.

- Design values F_{Rd} **Required HALFEN** Min. edge Required Load F_{Rd} Cast-in channel distance 2 HALFEN Bolt [kN/Rafter] Type C_{1,2} [mm] Type dimensions 12.6 HS 38/17 - M16 x 40 HTA-CE 38/17 75 HTA-CE 40/22 HS 40/22 - M16 x 50 16.8 100 HTA-CE 40/25 HTA-CE 50/30 19.6 150 HS 50/30 - M16 x 50 HTA-CE 49/30
- ① The maximum rafter strength is limited by the design load of each individual component of the rafter shoe. Load tests resulted in a mean breaking load of 50 kN. With normal loads larger than the recommended load capacity (= about $\frac{1}{3}$ of the breaking load), the rafter spacing may need to be reduced.
- $\$ If lower loads are present then the minimum edge distance C_{1,2} for the HALFEN Cast-in channels can be reduced. The distance to the concrete edge must be at least 170 mm.
- ③ Make sure that the HALFEN Cast-in channels are installed flush with the concrete surface. Use spacers if necessary.

1

HALFEN HNA Timber Fixing Strap

Typical installation of timber beams using HNA nailing straps with HALFEN Cast-in channels embedded in concrete.

Material/Finish

FV = 1.0038,

To provide an optimal base for roof framework, continuous HTA-CE HALFEN Cast-in channels or HTA-CE HALFEN Cast-in channel short elements are cast in the concrete; suitable for concrete ring beams or slabs. The type of HTA-CE HALFEN Cast-in channels, nailing straps and nails depend on the assumed loads (e.g. wind force).

For calculation and design criteria see:

- EN 1991-1-4 (EC1) und EN 1991-1-4/NA
- EN 1995-1-1 (EC5)

The timber fixing straps can be positioned on one or both sides of the timber beams or rafters. Refer to the following table for F_{Rd} load capacities. The beams / framework must be secured against twisting when straps are used only on one side of the beams, (e.g. by nailing to the upper wood roof boarding).

Assembly example:

Design value for load capacity F_{Rd} [kN] per Attaching timber fixing straps to wooden beams/rafters

1

HTA-CE Channels

2

HZA Channels

3

HGB Channels

4

HTU Channels

5

Roof and Wall

Suitable for	FV = 1.0038, hot-dip galvanized	Ū	beam attachment	wooden beams/rafters			
HALFEN Cast in shannali		Positi	on of timber fixing	straps			
Cast-III Charlinel.	Item name: length [mm]	Single-sided	Doubl	e-sided	Wire nails	Anchor nails	
	[]		for $b \ge 60 \text{mm}$	b ≥ 100 mm			
	HNA - N 95 - FV	4.2	1 9	5.6			
HTA-CE 28/15	HNA - N 120 - FV	4.2	4.9	5.0	according to EN 10230-1	according to the manufacturer's technical approval	
(FV)	HNA - WN 120 - FV	1.4	2.8	2.8			
	HNA - WN 185 - FV	1.4					
	HNA - BN 95 - FV		7.5	8.4			
HTA-CF 38/17	HNA - BN 120 - FV	6.3					
hot-dip galvanized (FV)	HNA - BN 185 - FV						
	HNA - WN 120 - FV	1.4	2 0	2 0			
	HNA - WN 185 - FV	1.4	2.0	2.8			

Type selection, timber fixing straps

Brick Tie Anchor Systems ML + BL

HALFEN ML and BL Brick tie anchors are tried and tested efficient installation systems for securing brick walls, masonry in-fills, partition walls, brick renders (with or without ventilation gap and heat insulation) to concrete

Plan view; wall attachment

walls, concrete supports, steel or wooden structures.

The brick tie anchors are able to move freely in the brick tie channels, considerably reducing cracks caused by masonry settlement.

All HTA-CE and HMS profiles have a foam filling to prevent concrete ingress. The channels are attached to the form-work using standard nails.

The HALFEN Brick tie anchors are inserted at the recommended intervals (static requirements) in the brick wall during construction (see page 65). The anchors are inserted in the brick tie channels, laid flat between the rows of brick and pressed into the mortar. The perforations in the anchors optimise anchorage with the mortar.

Roof and Wall

6

Curtain Wall

7

Accessories

Brick Tie Anchor Systems, ML + BL HALFEN Anchor Bolt Systems

Bolt anchor HB-BZ-U 8-15/80

- galvanized or stainless steel (A4)
- · approved for cracked and uncracked concrete
- with large washer DIN 9021/EN ISO 7093

Anchor rod HB -VMU-A 8-20/110

- galvanized or stainless steel (A4)
- approved for monolithic masonry
- with large washer DIN 9021/EN ISO 7093 (order separately)

Anchor rod HB-VMU-A 8-20/110 with Perforated sleeve HB-VMU-SH 14x100 or

Internal threaded sleeves HB-VMU-IGH M8 with Perforated sleeve HB-VMU-SH 16x100

- galvanized or stainless steel (A4)
- approved for perforated brick masonry
- large washer, see above

1

5

7

Accessories

Brick Tie Anchor Systems ML + BL

Brick tie anchors

Debond sleeve ML-G 150 for wall attachments, suitable for ML - anchors

ML-G 150

Permits movement in the longitudinal anchor direction, e.g. in long masonry bonds or partition walls adjoining concrete load bearing structures; prevents cracks forming.

ML-G 150, material: soft PVC, material thickness 1.5 mm

1

HGB

6

Curtain Wall

Firewall Connections with Wall Connecting Systems ML + BL

Firewall connection according to DIN 4102-4: 2016-05

Solid masonry fire walls

Statically required connections of load bearing, room enclosing, masonry walls can also be designed as fire walls in accordance with DIN 4102-4 section 9.8.4 using HALFEN Brick tie channels.

The anchorage to adjacent components (steel reinforced concrete supports or walls) meet the requirements for stability and fire resistance if the anchorage conforms to the standards set in DIN 4102-4 section 9.8.4 (figure 9.13, variant 2).

Connection of a load bearing masonry wall as a fire wall according to DIN 4102-4 section 9.8.4 (figure 9.13) or according to EN 1996-1-2: 2011-04 (figure E.4B)

Definition, DIN regulations

① HALFEN Cast-in channel

② Insulation layer:

According to DIN 4102-4 section 9.2.14 insulation layers in connecting joint gaps must "[...] be made of non-flammable mineral fibre; have a melting point \geq 1000°C as stated in DIN 4102-17; and have a gross density of \geq 30 kg/m³ and must not smoulder".

③ Masonry:

Bricks (gross density class) and minimum wall thickness according to EN 1996-1-2: 2011-04.

- ④ Masonry connection (vertically adjustable)
- **5** Expansion joint
- 6 Concrete

Product information

HALFEN Cast-in channel type ①	④ Brick tie ancho for standard grout	r (see page 62 ff.) for thin mortar
HMS 25/15 D	ML	ML 1
HTA 28/15	ML	ML 1
HTA 38/17	BL	-

Anchor spacings

HALFEN Brick tie anchors can be used at any position along the whole length of the brick tie channel. Generally the standard spacing between the anchors is 250 mm (4 anchors per metre).

Vertical section

1

HTA-CE Channels

2

HZA Channels

3

Restraint with Turnbuckle SPV

Product description

The restraint with turnbuckle SPV is suitable for compressive and tensile loads up to $F_{Ed} = 14.0 \text{ kN}$ and for clearances up to 200 mm. By turning the clamping sleeve (sleeve has a right and left-hand thread), the clearance can be freely adjusted within the given range. Connected to building structure using HALFEN Cast-in channels (order separately).

Included in delivery

- Turnbuckle SPH
- 2 HALFEN Bolts
- (1 right-hand thread, 1 left-hand thread)
- 3 standard nuts
- 2 washers and
- 2 locking washers SIC

Ordering example:

Item name:	SPV -	7,0 -	100 -	A4
type 💻				
load group 🗝				
wall clearance	e b 🗝			
material / fin	ish 🗝			

HALFEN	HALFEN SPV Restraint with turnbuckle									
Load capacity F _{Rd} [kN] ±7.0			±9.8			± 14.0				
Туре	Stand-off distance	HALFEN Bolt left-hand thread	Sleeve	HALFEN Bolt right-hand thread	HALFEN Bolt left-hand thread	Sleeve	HALFEN Bolt right-hand thread	HALFEN Bolt left-hand thread	Sleeve	HALFEN Bolt right-hand thread
	b	M12	L	M12	M16	L	M16	M16	L	M16
	[mm] ②	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
	100±10	50	60	40	50	60	40	-	-	-
	120±15	50	75	40	50	75	40	-	-	-
CDV/	140±15	50	75	60	50	75	60	80	60	50
SPV	160±15	50	95	60	50	95	60	80	75	60
	180±15	50	115	60	50	115	60	80	95	60
	200±15	50	135	60	50	135	60	80	115	60
HALFEN	N Cast-in channel	HTA	-CE 38/17	7 ①	HTA	HTA-CE 38/17 ① HTA-CE 49/30 ①			0 ①	

0 Short elements 150, 200 and 250 0 With F_{Rd} -load group 9.8 kN restricted to negative tolerance

For further concrete façades accessories see Catalogue Concrete Façade FB

1

HTA-CE Channels

2

HZA Channels

3

HGB Channels

4

HTU Channels

Restraint Tie HKZ

other in the concrete ensure

three-dimensional adjustability.

type -

clearance a1 = material / finish =

the washer ensure positive static load transmission.

> Please order HALFEN Cast-in channels and HALFEN Bolts and washers separately

(!)

HALFEN HKZ Restraint tie

Characteristics: Type selection: GV = galvanized.		Type selection: A4 = Stainless steel grade 1 4571/1 4404	Dimensions			
Load capacity F _{Rd}	ventilation gaps Type a ₁	Type a ₁	Length I	Spacing a ₁	Tolerance	Holes
[kN]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
	HKZ 28/15 - 50 - GV	HKZ 28/15 - 50 - A4	90	50		11 11 155
	HKZ 28/15 - 75 - GV	HKZ 28/15 - 75 - A4	115	75		LL II X 55
	HKZ 28/15 - 100 - GV	HKZ 28/15 - 100 - A4	140	100		
	HKZ 28/15 - 125 - GV	HKZ 28/15 - 125 - A4	165	125		
+4.9 (tension only)	HKZ 28/15 - 150 - GV	HKZ 28/15 - 150 - A4	190	150	a ₁ +20	LL 11 x 55
(consider only)	HKZ 28/15 - 175 - GV	HKZ 28/15 - 175 - A4	215	175	-20	
	HKZ 28/15 - 200 - GV	HKZ 28/15 - 200 - A4	240	200		RL 11
	HKZ 28/15 - 225 - GV	HKZ 28/15 - 225 - A4	265	225		
	HKZ 28/15 - 250 - GV	HKZ 28/15 - 250 - A4	290	250		
	HKZ 38/17 - 75 - GV	HKZ 38/17 - 75 - A4	115	75		LL 13 x 55
	HKZ 38/17 - 100 - GV	HKZ 38/17 - 100 - A4	140	100		
	HKZ 38/17 - 125 - GV	HKZ 38/17 - 125 - A4	165	125		
	HKZ 38/17 - 150 - GV	HKZ 38/17 - 150 - A4	190	150		
+9.8	HKZ 38/17 - 175 - GV	HKZ 38/17 - 175 - A4	215	175	a ₁	LL 13 x 55
(tension only)	HKZ 38/17 - 200 - GV	HKZ 38/17 - 200 - A4	240	200	±20	
	HKZ 38/17 - 225 - GV	HKZ 38/17 - 225 - A4	265	225		RL 13
	HKZ 38/17 - 250 - GV	HKZ 38/17 - 250 - A4	290	250		
	HKZ 38/17 - 275 - GV	HKZ 38/17 - 275 - A4	315	275		
	HKZ 38/17 - 300 - GV	HKZ 38/17 - 300 - A4	340	300		

① The load capacities apply for the HKZ-restraint ties. The channels (A) and the fixings (B) must be verified case by case, depending on the concrete strength, the reinforcements and the edge distance c1.

1

HTA-CE Channels

2

HZA Channels

Restraint Tie HKZ - GF / GU

Product description

The serrations in the bracket and in the washer ensure positive static load transmission.

Please order HALFEN Cast-in m channels and HALFEN Bolts and washers separately.

The double-sided attachment using a HALFEN Bolt and a threaded plate ensures positive and slippage-free wind anchoring when used in combination with HALFEN HTA-CE Cast-in channels set in concrete; connection is threedimensionally adjustable.

Ordering example:

Item name:	HKZ - GF 38/17 -	125 - GV
tuna =		
type -		
axial spacing	ga₁ ■	
material/ G	V/A4 =	

HALFEN Restraint	ties type HKZ-GF and type HKZ-GU					
Characteristics:	Type selection: GV = galvanized not suitable for façades with ventilation gap	Type selection: A4 = Stainless steel 1.4571/1.4404	Dimensions:			
F _{Rd} [kN]	Type a ₁	Type a ₁	Length I	Spacing a1	Tolerance	Slot
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
	HKZ - GF 28/15 - 75 - GV	HKZ - GF 28/15 - 75 - A4	115	75		
	HKZ - GF 28/15 - 100 - GV	HKZ - GF 28/15 - 100 - A4	140	100		
±4.9	HKZ - GF 28/15 - 125 - GV	HKZ - GF 28/15 - 125 - A4	165	125	a ₁ ±20	11 x 55
	HKZ - GF 28/15 - 150 - GV	HKZ - GF 28/15 - 150 - A4	190	150		
	HKZ - GF 28/15 - 175 - GV	HKZ - GF 28/15 - 175 - A4	215	175		
	HKZ - GF 38/17 - 100 - GV	HKZ - GF 38/17 - 100 - A4	140	100		
	HKZ - GF 38/17 - 125 - GV	HKZ - GF 38/17 - 125 - A4	165	125	a ₁	13 x 55
	HKZ - GF 38/17 - 150 - GV	HKZ - GF 38/17 - 150 - A4	190	150	±20	
±9.8	HKZ - GF 38/17 - 175 - GV	HKZ - GF 38/17 - 175 - A4	215	175		
	HKZ - GU 38/17 - 200 - GV	HKZ - GU 38/17 - 200 - A4	240	200		
	HKZ - GU 38/17 - 225 - GV	HKZ - GU 38/17 - 225 - A4	265	225	a ₁ ±20	13 x 55
	HKZ - GU 38/17 - 250 - GV	HKZ - GU 38/17 - 250 - A4	290	250		
	HKZ - GU 50/30 - 200 - GV	HKZ - GU 50/30 - 200 - A4	240	200		
	HKZ - GU 50/30 - 225 - GV	HKZ - GU 50/30 - 225 - A4	265	225		
±16.8	HKZ - GU 50/30 - 250 - GV	HKZ - GU 50/30 - 250 - A4	290	250	a ₁ ±20	17 x 60
	HKZ - GU 50/30 - 275 - GV	HKZ - GU 50/30 - 275 - A4	315	275		
	HKZ - GU 50/30 - 300 - GV	HKZ - GU 50/30 - 300 - A4	340	300		

① The load capacities apply for the HKZ-restraint ties. The channels (2) and the fixings (3) must be verified case by case, depending on the concrete strength, the reinforcements and the edge distance c_1 .

Precast Connection HVL

Assembly:

The connecting strap is delivered ready to be installed: The screw fastening sets and the counter plate are pre-assembled for fast installation.

Assembly part HVL-M

- Pre-assembled, consisting of:
- serrated hammer-head strap
- 1 serrated counter plate
- 2 bolt sets (Bolt HS 38/17 - M12 x 50+ washer
- + tapered compressed spring)

Installation component 1 HVL-E:

Assembly part

Strap HVL - M

11

HALFEN Cast-in channel HTA 38/17-300-SK with 2 bolt anchors and one loop end anchor.

Installation component 2:

HALFEN Cast-in channel HTA-CE 38/17-150 with 2 bolt anchors.

Installation

component 2,

cast-in channel

HTA-CE 38/17 - 150

Corrosion protection

Precast concrete

element

U

Ш

Н

 hammer-head strap, cast-in channel: hot-dip galvanized

Installation

HVL-E

component 1,

cast-in channel

• HALFEN Bolts, nuts, washers and springs: galvanized

These parts are covered by mortar after installation.

5

HALFEN HKW Corner Guard

Column edge, typical cross-section

Advantages:

- 92° angle ensures a tight fit to the formwork.
 This prevents concrete seeping between the formwork and the corner profile, resulting in a smoother finish
- U-shaped concrete reinforced anchors do not interfere with the corner reinforcement and allow easy installation of the reinforcement
- anchors are of reinforcement steel quality to guarantee optimal anchorage
- · competitive pricing through serial production

Corner guard HKW							
Type se	election:	Materia	l/Finish:	Anchor dimensions	Radius		
		FV = hot-dip galvanized	A2 = Stainless steel				
Type a/t [mm]	Length no. of L anchors [mm]			l × e [mm]	R [mm]		
HKW 50/5 -	500 / 2	FV	A2				
	750 / 2	FV	A2		6		
	1000 / 2	FV	A2	75 x 55			
	1500 / 3	FV	A2				
	2000 / 4	FV	A2				
HKW 80/6 -	500 / 2	FV	A2				
	750 / 2	FV	A2				
	1000 / 2	FV	A2	100 x 85	8		
	1500 / 3	FV	A2				
	2000 / 4	FV	A2				
HKW 100/8 -	500 / 2	FV	A2				
	750 / 2	FV	A2				
	1000 / 2	FV	A2	110 x 85	16		
	1500 / 3	FV	A2				
	2000 / 4	FV	A2				

Material/Finish:

- FV = Corner profile: Steel hot-dip galvanized 1.0038 Anchor: B500B (BSt 500 S)
- A2 = Corner profile: Stainless steel 1.4307 Anchor: B500B/A NR

Ordering example:

- type / profile

A HGB Channels W HZA Channels N HTA-CE Channels

1

6

Curtain Wall

Curtain Wall HCW

The advantages at a glance

Todays modern buildings require façades of the highest quality that can be installed quickly and safely. This is the reason the Curtain Wall System is chosen more and more frequently by architects and investors.

HCW B2

For modular façades. Anchored to the top surface of floor slabs.

HCW B1

For post and beam façades. Anchored to the top surface of floor slabs.

Fast and cost-effective

- 3-dimensional adjustable connection when used with anchor channels
- uses bolts instead of welds
- fast assembly reduces installation time

HCW-ED/EW

For post and beam façades. Anchored to the front surface of floor slabs. 1

3

5

4

HALFEN CURTAIN WALL SUPPORT SYSTEMS HCW

Application Examples

Fixing of curtain wall system using HCW-B2 Brackets connected to HTA-CE Anchor channels

Fixing of a post and beam façade using HCW-ED Brackets on HTA-CE Channels

Fixing of a modular façade using HCW-ED Brackets on HTA-CE Channels

Typical curtain wall fixing with HTA-CE Anchor channels

Liberty Life, Johannesburg

Post Tower, Bonn

Burj Chalifa, Dubai

Westin Libertador Hotel, Lima

Torre Espacio, Madrid

Sage Centre, Gateshead

Edificio Gas Natural, Barcelona

World Financial Center, Shanghai

7

Accessories

1

HTA-CE Channels

2

HZA Channels
General

HALFEN Curtain wall system

This type of construction is characterized by an outer wall with a continual outer skin (see figure 1).

The façade is attached to the main structure of the building using only the required number of point-load connections.

Curtain wall façades protect the interior of buildings from external, unwanted environmental influences whilst still permitting visual contact with the outside environment with structural components that can be opened or are transparent. Specifically, this includes sufficient stability against wind loads, adequate insulation against frost in winter, heat in summer as well as against external noise. In addition, various requirements must be met to protect against fire and other critical situations.

Curtain wall

Figure 1 partial view of a façade

HZA Channels **C** HTA-CE Channels

1

3

section

7

Post and beam façade and the modular façade

Basically, we distinguish between two methods of curtain wall façades constructions: the **post and beam façade** and the **modular façade**.

Post and beam façade

One basic distinctive difference is the way expansion in the façade is distributed (for example; thermal expansion). With the post and beam façade (see figure 2) the vertical and horizontal frame supports are installed in spacings corresponding to the façade elements. The supports are installed with an expansion gap between components allowing for sufficient expansion.

The respective longitudinal and transverse connections have an expandable joint. The filler elements (glass or panel) installed in a post and beam structure permit movement within the tolerance of the designed expansion joint. The glass and filler elements are delivered separately and are then installed on site, requiring on-site scaffolding.

Modular façade Image: Image:

Modular façade

With the modular façade method (see figure 3), the façade is made of prefabricated elements, in which glass, natural stone or infills are pre-installed. The façade profiles are designed as a key and slot system to allow for expansion. This method provides immediate weather protection and allows the building contractor to start interior work on the respective floor directly after the prefabricated modules have been installed.

Scaffolding is not required with this method of construction.

Product Range

6

Curtain Wall

7

Accessories

HZA-R 29/20 HZA-R 38/23 HZA-R 53/34

18

11111111

2

220

I4

22.5

330

29

[14**]**

Product Range

HCW 52/34 with bolts and bracket

1

HTA-CE Channels

2

HZA Channels

3

HGB Channels

4

HTU Channels

5

Roof and Wall

6

Curtain Wall

7

Accessories

HALFEN Channel HCW 52/34

Typical installation

Product description

Identification: HCW 52/34 Material: hot-dip galvanized

Dimensions in [mm]

Channel dimensions and edge spacing

7

Accessories

HALFEN Cast-in Channel HCW 52/34

Channel load data

The following load failure were averaged from three tests:

F _{V failure}			= 142.3 kN
F _{N failure}			= 47.4 kN
F _{res,failure}	=	$\sqrt{F_{N}^{2} + F_{V}^{2}}$	= 150.0 kN

The load deformation diagram (see right) may be used to determine allowable loads based on acceptable displacement and the required safety factor according to local building codes. The diagram is based on the following:

- tensile and transverse loads were increased at a ratio of 1:3 up to breaking point
- concrete slab thickness ≥ 125 mm and reinforcement as shown on page 76
- concrete strength class ≥ C 20/25 N/mm²
- load is transferred into the channel via two HALFEN Bolts HS 50/30 M20 Grade 8.8. The bolt spacing is 150 mm. A sample calculation is shown below.

The safety factor is freely selected. However, it must be determined which factors are actually to be implemented, whether these are based on project specific boundary condition or on valid building regulations.

Calculation example: Assumed safety factor v = 3

(failure test load / working load) ra laad from the test

Average	raiiure	load	Irom	the	lesis:	
-					-	

6.11

Transvers	se tensile stress	F∨ ultimate	=	142.3 kN
Tensile st	cress	FN ultimate	=	47.4 kN
Res. diag	conal tensile load	Fres,ultimate	=	150.0 kN
Actual w Transvers	orking loads at bolts se tensile stress Tensile stress	(specification b F _V = 35 kN F _N = 10 kN	oy faç	ade stress engineer):
Allowabl	e load with v = 3 aga perm. F _V = perm. F _N = perm. F _{res} =	ainst average u 142.3/3 47.4/3 150/3	ltima	te load from tests: = 47.4 kN = 15.8 kN = 50.0 kN
Control:	Working load F _V	= 35 kN < 47	2.4 kN	
	Working load F _N	= 10 kN < 15	9.8 kN	
	Working load F _{res}	= $\sqrt{(10)^2 + (10)^2}$	35)2	= 36.4 kN < 50kN

Displacement at working load < 1 mm (see diagram). Actual safety factor for average ultimate load $\gamma_1 = (150/36.4) = 4.12$.

Corresponding HALFEN Bolts HS 50/30

Depending on the load size, we recommend the use of HALFEN Bolts HS 50/30 M16 or M20, grade 8.8 in combination with HALFEN Cast-in channel HCW 52/34. The bolts stated below are zinc galvanized with a special coating.

For interior use this design is considered equivalent to a hot-dip galvanized design. Other bolt sizes and materials can be supplied. Please contact us for detailed information. Addresses can be found on page 91.

Type selection	HALFEN Bolts H	IS 50/30 GV Grade 8	.8			
Thread	Material grade	Available length L [mm]	Allowable resulting bolt load (all directions) perm. F s [kN]	Allowable bending moment [Nm]	Recommended torque [Nm]	If the bolt is stressed in the direction of a slot its load capacity must be verified
M 16	8.8	40, 60, 80, 100	36.1	111	60	taking bolt flexure into account.
M 20	8.8	45, 60, 80, 100	56.4	216	120	

© 2018 HALFEN · B 18-E · www.halfen.com

6

Curtain Wall

7

Accessories

1

HTA-CE Channels

2

HZA Channels

3

HGB Channels

HALFEN Cast-in Channels with Rebar Anchor HTA-R and HZA-R

② Material 1.0038, ③ Material 1.0044, ④ Not available for HALFEN Cast-in channels HZA-R 29/20 Notes: HALFEN Cast-in channels HTA-R / HZA-R are not included in the HTA-CE / HZA-Approval

Other channel lengths from 150-6070 mm are available

6

Curtain Wall

7

5

Edge of Slab Brackets HCW-ED Post and Beam Façades

Application example

HALFEN Edge of slab brackets are connected in pairs, one each side of the mullion, and are available in two types:

Type HCW-ED Brackets are designed to support both vertical and horizontal loads. Type HCW-EW Brackets are designed to support horizontal wind loads only.

The brackets guarantee a simple adjustable connection. The HALFEN Bolts (connection: bracket to HALFEN Channel) and the standard hexagonal bolts M12 (connection: bracket to façade mullion) must be grade strength 8.8.

A round auxiliary hole in the long arm of the brackets can be used for temporary attachments; example: temporary fixing of brackets to support post with self-tapping screws until the final connection is made.

The brackets are made of high quality aluminium material. Special nylon discs are placed between the "Wind load" Bracket HCW-EW and support post.

To guarantee correct installation, the HCW-ED brackets are marked 'R' for right, 'L' for left and 'UP' for top.

Serrated washers included in delivery

Serrated washers included in delivery

Size	Bracket code	А	В	С	D	E	F	G	н	J	L	Μ
Small	HCW-ED 1 HCW-EW 1	108	70	114	10	57	64	25	51	36	40	57
Medium	HCW-ED 2 HCW-EW 2	133	70	127	10	64	64	51	51	36	40	82
Large	HCW-ED 3 HCW-EW 3	159	70	140	10	70	64	76	51	36	40	108

Dimensioning

Interaction diagram for type HCW-ED1 (small)

Calculation basis

Interaction diagram for type HCW-ED2 (medium)

Interaction diagram for type HCW-ED3 (large)

Design Loads using two HCW-EW Brackets, Loads in the HALFEN Bolts (HCW-ED)

Design wind loads for type HCW-EW					
Max. applied de	sign load F _{hd} [kN]				
Size	Bracket code	max. F _{vd} [kN]	max. F _{hd} [kN]		
Small	HCW-EW 1	0	8.5		
Medium	HCW-EW 2	0	11.67		
Large	HCW-EW 3	0	13.96		

HCW-EW Brackets are only suitable for wind loads.

Forces acting on the T-head bolts at the channel (HCW-ED)

The design reaction forces components in the HALFEN Bolts at connection curtain wall bracket to HALFEN Cast-in channel are calculated by multiplying the design loads F_{vd} and F_{hd} at connection curtain wall bracket and façade support post with the factors $s_x,\,s_y$ and $s_z.$

The factors are dependent on the bracket geometry, the load direction and the bolt position (see figure on the right). See table below for the multiplication factors for determining the design reaction forces in the HALFEN Bolts.

Lower installation position of HALFEN Bolt (Position 3)								
S _i =	Dead load • (F _{vd} / 2)	× si	S _i =	Wind load (F _{hd} / 2)	× si	Resulting load 45° S _i = (res. F _d / 2) × s _i		
s _x	sy	Sz	s _x	sy	sz	s _x	sy	Sz
0.5	3.2	-1.0	-1.0	1.0	0.0	-0.3	3.0	-0.7
0.5	3.6	-1.0	-0.5	1.0	0.0	0.0	3.3	-0.7
0.5	4.0	-1.0	-0.4	1.0	0.0	0.1	3.5	-0.7
allation po	sition of H	ALFEN Bo	lt (Positior	າ 1)				
0.6	1.3	-1.0	-1.0	3.6	0.0	-0.3	3.4	-0.7
0.6	1.6	-1.0	-0.5	3.1	0.0	0.0	3.4	-0.7
0.6	1.9	-1.0	-0.4	2.9	0.0	0.1	3.4	-0.7
	Illation po S_i = S_x 0.5 0.5 0.5 Illation po 0.6 0.6 0.6 0.6	Idiation position of H Dead load $S_i = (F_{Vd} / 2)$ s_x S_y 0.5 3.2 0.5 3.6 0.5 4.0 ullation position of H 0.6 1.3 0.6 1.6 0.6 1.9	Idlation position of HALFEN Bol Dead load Si = (Fvd / 2) × si sx sy sz 0.5 3.2 -1.0 0.5 3.6 -1.0 0.5 4.0 -1.0 old 1.3 -1.0 0.6 1.3 -1.0 0.6 1.6 -1.0 0.6 1.9 -1.0	$\begin{tabular}{ c c c c c } \hline Ulation position of HALFEN Bolt (Position of HALFEN Bolt (Position of HALFEN Bolt (Position of the second sec$	$\begin{tabular}{ c c c c c } \hline Ueta i loss of the type of the type of the type of the type of type o$	Idlation position of HALFEN Bolt (Position 3) Dead load $S_i = (F_{vd} / 2) \times s_i$ Wind load $S_i = (F_{hd} / 2) \times s_i$ s_x s_y s_z s_x s_y s_z 0.5 3.2 -1.0 -1.0 1.0 0.0 0.5 3.6 -1.0 -0.5 1.0 0.0 0.5 4.0 -1.0 -0.4 1.0 0.0 ullation position of HALFEN Bolt (Position 1) 0.6 1.3 -1.0 -1.0 3.6 0.0 0.6 1.6 -1.0 -0.5 3.1 0.0 0.6 1.9 -1.0 -0.4 2.9 0.0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Calculation example

Assumed:	slab thickness = 200 mm, width of mul	lion = 80 mm,
	projection a = 80 mm (install. position	see page 79)
	design dead load	$F_{vd} = +3.5 kN$
	design wind load (wind suction)	$F_{hd} = +7.0 kN$

Selected: HALFEN Bracket type HCW-ED 2

- \Rightarrow possible projection M = 82 \pm 25 mm
- ⇒ Interaction diagram type HCW-ED 2 (see page 80) proves that the assumed load is within the permitted load interaction zone

Determination of the design reaction forces in a HALFEN Bolt ① Lower installation position (Position 3)

$S_x = (3.5/2) \times 0.5 + (7/2) \times (-0.5)$	=	-0.88 kN
$S_y = (3.5/2) \times 3.6 + (7/2) \times 1.0$	=	+9.80 kN
$S_z = (3.5/2) \times (-1.0) + 0$	=	−1.75 kN

 \Rightarrow Resulting bolt load

res.
$$S_d = \sqrt{(-0.88)^2 + (9.80)^2 + (-1.75)^2} = 9.99 \text{ kN}$$
 per bolt

 Calculation basis

 Image: provide state stat

② Upper installation position (Position 1)	
$S_x = (3.5/2) \times 0.6 + (7/2) \times (-0.5) =$	-0.70 kN
$S_y = (3.5/2) \times 1.6 + (7/2) \times 3.1 =$	+13.65 kN
$S_z = (3.5/2) \times (-1.0) + 0 =$	−1.75 kN

 \Rightarrow Resulting bolt load

res.S_d = $\sqrt{(-0.70)^2 + (13.65)^2 + (-1.75)^2}$ = 13.78 kN → each bolt → determining factor for bolt selection

see page 78

Selected H	ALFEN Channel:	
HTA-R 50	/30 - 350 - 3 Anchor - F\	1

with $V_{yRd} = 2 \times 5.6 \text{ kN} > 2 \times S_z = 2 \times 1.75$
(a _r ≥ 75 mm)
$F_{Rd} = 2 \times 14.0 \text{ kN} > 2 \times \text{res. } S_d = 2 \times 13.78 \text{ kN}$
Check : bolt spacing: P =80+2 × 36 = 152 mm
> 150 mm 🖌
Selected HALFEN Channel:
HS 50/30 - M12 × 60 GV 8.8

Requirement according to interaction diagram see page 80

1

HTA-CE Channels

Accessories

Top of Slab Brackets HCW-B1

Support brackets for horizontal and vertical loads

HALFEN Brackets HCW-B1

HALFEN Brackets HCW-B1 for installing in the top of concrete slabs, are available in two load ranges and three cantilever sizes.

The brackets are made in grade S355 quality galvanized steel. Vertical adjustability is $\pm 10 \text{ mm}$.

Three dimensional adjustability is ensured when used in combination with HALFEN HTA-CE Cast-in channels.

Required edge reinforcement $\geq \emptyset 12$ (B500B)

The lateral connecting plates are connected to the façade posts using M8 screws (not included). The façade planner is responsible for providing the static verification for the support posts. Use M16 HALFEN Bolts, grade 8.8 (order separately), to connect the base bracket to the HALFEN Castin channel. Depending on the façade type, the connection between the connecting plate and the base bracket can be designed either laterally adjustable or as a fixed point.

Dimensioning / Type selection

Design load ranges									
Load range [kN]	dead load F_{vd [kN]}	wind load F_{hd} [kN] (wind suction + compression)							
4/12	4	±12							
7/20	7	±20							

 F_{vd} , F_{hd} : allowable design loads with a partial safety factor γ_F = 1.35 for dead load and γ_F = 1.5 for wind load.

Type selection										
Load range [kN]	a [mm]	Item name HCW-B1	L [mm]	W [mm]	HALFEN Channel ①	Recommended HALFEN Bolt				
	504/12-50 270 150 HT	HTA-CF	HS 40/22							
4/12	75	4/12-75	295	150	40/22P-250	M16×60				
	100	4/12-100	320	150	2 Anchors	8.8				
	50	7/20-50	270	175	HTA-CF	HS 50/30				
7/20	75	7/20-75	295	175	50/30P-300	M16×60				
	100	7/20-100	320	200	3 Anchors	8.8				

① Recommended HALFEN Channel exploiting full load capacity of bracket

Top of Slab Brackets HCW-B2

Brackets for horizontal and vertical loads

HALFEN Brackets HCW-B2

HALFEN Brackets HCW-B2 are made in grade S355 quality galvanized steel. The vertical adjustability is ± 24 mm. Three dimensional adjustability is ensured when used in combination with HALFEN Cast-in channels HTA-CE. The lateral connecting plates are connected to the façade posts using M12 screws (not included in delivery).

Required edge reinforcement $\geq \emptyset 12$ (B500B)

The façade planner is responsible for providing the static verification for the support posts. Use M16 HALFEN Bolts, grade 8.8 (order separately), to connect the base bracket to the HALFEN Cast-in channel. Depending on the façade type, the connection between the connecting plate and the base bracket can be designed either laterally adjustable or as a fixed point.

Accessories

The advantages at a glance

To complement the product range HALFEN offers a wide range of accessories. Everything from one source.

The product range

Everything you need from the framing channel right down to the nut, the locking washer, threaded rod, locking and threaded plate even an adjustable connector; we provide all you need for your project. HALFEN Framing channels

You are guaranteed to find an economical solution for your projects in the extensive HALFEN Framing channels product range.

HALFEN Adjustable coupler

HJV Adjustable coupler Allows free height adjustment in suspended installations. KLP Clamp The clamp allows fast connection

of framing channels to 1-beams.

The whole range of framing system products can be found at www.halfen.de **MT-FBC** (Flexible bolt connections) or **MT-FFC** (Flexible framing connections).

ΗJV

6

Curtain Wall

7

Accessories

Nuts, Washers

Accessories: Nuts, Washers

MU	GV	A4	S/m	S/m	е	US		GV	A4	D	d	S		
Hexagonal nuts EN ISO 4032/	galvanized FK 8	stainless steel	DIN	ISO	[]	Washer DIN 9021	DIN	galvanized for bolt	stainless steel for bolt	[mm]	[mm]	[mm]		
DIN 934	thread	thread				EN ISO	440	M6		22	6.6	2		
	M6	M6	10/ 5	10/ 6	11.5	7094/	9021	M8	M8	24	8.4	2		
	M8	M8	13/6.5	13/7.5	15.0	DIN 440	9021	M10	M10	30	10.5	2.5		
	M10	M10	17/8	16/9.5	19.6		440	M12		45	13.5	4		
	M12	M12	19/10	18/12	21.9	s	9021	M12	M12	37	13	3		
e	M16	M16	24/13	24/15.5	27.7		9021	M16	M16	50	17	3		
 ≝►	M20	M20	30/16	30/19	34.6	d d	440	M20		72	22	6		
	M24		36/19	36/22	41.5			Ordering exam	ole: US - M12 -	GV -DIN	9021			
	FV	A2	S/m	S/m	е			0						
	hot-dip	stainless steel	DIN	EN		US		GV	A4	D	d	S		
Ε	thread	thread	[mm]	[mm]	[mm]	Washers		galvanized	stainless steel					
	M6, M8	M8	13/6.5	13/7.5	15.0	EN ISO 708	9/	for bolt	for bolt	[mm]	[mm]	[mm]		
	M10	M10	17/8	16/9.5	19.6	DIN 125		MG	MG	12	6.4	16		
	M12	M12	19/10	18/12	21.9	~ v		M8	M8	16	8.4	1.0		
	M16	M16	24/13	24/15.5	27.7	$\bigcirc \dagger$		M10	M10	21	10.5	2		
						d		M12	M12	24	13	2.5		
VUS	FV	A4		a × b :	×d			M16	M16	30	17	3		
Square washers	hot-dip	at studies a			-			M20	M20	37	21	3		
	galvanize	d stainless for bo	olt	[mm	1]			M24		44	25	4		
VUS 40/25	TOT DOIL	AA11	, I	40 × 40) ~ 5			FV	A2	D	d	S		
for profile 40/25;	M10	10110	M10) ~ 5			hot-dip	stainless steel					
HZA 41/22	N12	1011	2 c	40 ~ 40) ~ 5			galvanized for bolt	for bolt	[mm]	[mm]	[mm]		
	11110	/// 10	•						M8	17	8.4	1.6		
a 🗸 b								M10	M10	21	10.5	2		
VUS 49/30 for profile 54/33.	M10	M10)	37×3	7×5			M12	M12	24	13	2.5		
49/30	M12	M1:	2	37 × 3	7×5			M16	M16	30	17	3		
d	M16	M10	5	3/×3/×5			Ordering exa			ample: US - M12 - GV - DIN 125				
a 🗸 b	M20	M20)	37 × 3	7×5	SIC								
VUS 52/34	M16	M1	5	50 × 5	0 × 6	Locking was	sher	GV	A4		Suitab	ie for √ Bolts		
for profile 52/34,	M20	M20)	50 × 5	0 × 6	0		galvanizod	stainless ste	eel 🔒	uno d	imonsions		
50/30								gaivailizeu	A4		ype u			
a b								SIC - 50/30 - G	V SIC - 50/30	• A4 50	J/30 N	116, M20		
VUS 72/49	M20	M20)	54 × 5	4 × 6		/	SIC - 40/22 - G	V SIC - 40/22	• A4 40	3/1/)/22	M16		
72/49	M24	M24	1	54 × 5	4 × 6			SIC - 38/23 - G	v	38	3/23	M16		
	M27	M2	7	54 × 5	4 × 6			SIC - 29/20 - G	v	29	9/20	M12		
a b	M 30	M 3	0	54 × 5	4 × 6			SIC - 38/17 - G	V SIC - 38/17	- A4 38	3/17 D/22 N	A12, M10		
VUS 41/41	M6	M6		40 × 4	0 × 6			SIC - 28/15 - G	V SIC - 28/15	A4 28	3/15 <i>I</i>	M8, M10		
for all 41 profiles	M10	M10)	40 × 4	0 × 6			SIC - 20/12 - GV SIC - 20/12 - A4 20/12 M8				M8		
	M12 M12		2	40 × 4	0 × 6			Ordering exam	ple: SIC - 38/17	' - GV				
a b	Ordering exa	mple: VUS 52/3	84 - FV - <i>I</i>	M20					Assemb	lv sche	me.			
Application VUS		7777				Applicatio	n SIC	•	APPENID	y suit	inc.			
For shimming non	flush		Shimmin	5		For securi	nσ HΔ	I FENI Rolter			\checkmark	/		
									2/					
Installations prevents bolts turning when HALFEN Channel								1						
			4			tightening	nuts		HALFEN	I Bolt -		P		

HTA-CE Channels

1

HZA Channels **Z**

3

HGB Channels

7

@ 2018 HALFEN \cdot B 18-E \cdot www.halfen.com

vus

Locking washer SIC

Threaded Rods, Hex Bolts, Coupler Sleeves, Ring Nuts

Accessories: Threaded Rods, Hex Bolts, Coupler Sleeves, Ring Nuts

VBM	GV	A4	D	L	F _{Rd}	perm. F
Coupler sleeves, round	hot-dip galvanized thread	stainless steel thread	[mm]	[mm]	① [kN]	[kN]
	M6	M6	10/10	15	3.1	2.2
	M8	M8	12/14	20	5.6	4.0
	M10	M10	13/16	25	9.0	6.4
	M12	M12	16/20	30	13.0	9.3
	M16	M16	21/25	40	24.2	17.3
\bigcirc	M20	M20	26/32	50	37.8	27.0

Ordering example: VBM - A4 - M16

S

DIN

[mm]

10

13

17

19

24

d

13

17

S

EN ISO

[mm]

10

13

16

18

24

[kN]

1.5

3.3

5

F

- HJV

max. F_{Ed} perm. F

2

[kN]

2.1

4.6

7.0

НЅК	GV 8.8	A4
Hexagonal head bolts	galvanized FK 8.8	stainless steel
EN ISO 4017/	aimensions	thread
DIN 933	M6 × 12	
(without nut)	M6 × 25	
	M8 × 25	M8 × 25
	M8 × 40	
	M10 × 20	
	M10 × 30	M10 × 30
	M10 × 45	M10 × 45
	M10 × 60	
	M10 × 70	
	M12 × 22	
	M12 × 25	M12 × 25
	M12 × 30	M12 × 30
	M12 × 40	M12 × 40
	M12 × 50	
	M12 × 60	M12 × 60
	M12 × 80	M12 × 80
Llow halts are used	M12 × 90	
in combination with	M16 × 40	M16 × 40
HALFEN Threaded	M16 × 60	M16 × 60

HJV

plates

SKM Hexagonal coupler sleeves with view holes

FV	A4	S	L	F _{Rd}	perm.
hot-dip galvanized thread	stainless steel thread	[mm]	[mm]	① [kN]	[kN]
M10	M10	13	40	9.0	6.4
M12	M12	17	40	13.0	9.3
M16	M16	22	50	24.2	17.3
			-		

Ordering example: SKM - FV - M12

SPH

Turnbuckle with rightand left-hand thread

f = minimum screw depth:

M12 ≙ 10 mm M16 ≙ 13 mm

RM Ring nut DIN 582 edition 2010-09

stainless steel thread M12stainless steel thread M16 × length L [mm]for M12 (mm]for M16 (mm]M12 × 60M16 × 601622M12 × 75M16 × 751622M12 × 95M16 × 951622M12 × 115M16 × 1151622M12 × 135M16 × 1351622perm. F = 5kN $F_{Rd} = 7kN$ perm. F = 10 kN $F_{Rd} = 14kN$ Fract = 14 kN	A4	A4	D	D
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	stainless steel thread M12 × length L [mm]	stainless steel thread M16 × length L [mm]	for M12 [mm]	for M16 [mm]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M12 × 60	M16 × 60	16	22
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M12 × 75	M16 × 75	16	22
$\begin{tabular}{ c c c c c c c } \hline M12 \times 115 & M16 \times 115 & 16 & 22 \\ \hline M12 \times 135 & M16 \times 135 & 16 & 22 \\ \hline perm. F = 5 kN & perm. F = 10 kN \\ \hline F_{Rd} = 7 kN & F_{Rd} = 14 kN \\ \hline \end{tabular}$	M12 × 95	M16 × 95	16	22
	M12 × 115	M16 × 115	16	22
$ \begin{array}{l} \mbox{perm. } F=5kN \ \ \mbox{perm. } F=10kN \\ F_{Rd}=7kN \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	M12 × 135	M16 × 135	16	22
	perm. F = 5 kN F_{Rd} = 7 kN	perm. F = 10 kN F _{Rd} = 14 kN		

Ordering example: SPH - A4 - M 12 \times 75

GV	d	F _{Rd}	perm. F
C 15E, galvanized thread	[mm]	① [kN]	[kN]
M8	20	2.0	1.4
M10	25	3.2	2.3
M12	30	4.8	3.4
M16	35	9.8	7.0
M20	40	16.8	12.0

Ordering example: RM - GV - M12

① Recommended design value of the load capacity with a centric tensile stress

 $\ensuremath{\textcircled{}}$ Recommended design value of the load

1 HTA-CE Channels 2 HZA Channels 3 HGB Channels 4

6

Curtain Wall

Rail Clips

KLP-S Rail clips, steel 1.0038 forged

FV hot-dip galvanized	Heel width n	for HALFEN Bolts	Dimensions [mm]			allowable load at σ allowable = 125 N/mm ²	l Standard profile I	preferred for use other beam, flange thick- ness channels	with channels				
Туре	[mm]	Ø × I [mm]	a	b	с	Ød	h	k	m	F [kN]		t [mm]	
No. 10	16	M16 × 60	44.0	45	12	18	5	12.0	22.0	3.5	80 - 140	4 - 6	-
No. 26	without heel	M16 × 60	62.5	64	21	18	9	16.5	34.5	3.5	160-240	7-9	S24, A45, A55
No. 20	20	M20 × 65	50.0	52	18	22	8	15.0	22.0	10.0	160-240	7-9	S24 - S49
<u> </u>													

Ordering example: KLP - S - Nr. 26 - FV

KLP - 60 rail clips

FV Hot-dip galvanized	Clamping height h [mm]	Allowable load [®] [kN]	Standard profile I	Preferred for use wit Standard profile IPB	th Crane and running tracks [@]
60/10	10	F ₁ = 7.0	120 - 160	100	A65, S33, S41
60/12	12	HALFEN Bolt	220-240	140	A100, S49, A75
60/14	14	M16 × 60, Grade 4.6	240 - 280	160 - 180	A120, S54
60/16	16	F ₂ = 11.25	300 - 340	200-220	S64
60/18	18 ^③	HÂLFEN Bolt	360 - 380	240-260	_
60/20	20 ^③	M16 × 60, Grade 8.8	400 - 450	280 - 300	_

② Take the load capacity of HALFEN Channels into account (Cantilever must be considered when selecting the HALFEN Channels and Bolts)
 ③ Bolt M16 × 80 necessary
 ④ Check flange thickness of profile!
 Order example: KLP - 60/10 - FV

C HTA-CE Channels

Framing Channels HM/HZM/HL/HZL -Type Overview

4

and Wall

Curtain Wall

Framing Channels HM/HZM/HL/HZL - Application Examples

Type Overview

Application Examples

HALFEN Framing channels HM/HZM and slotted HALFEN Framing channels HL/HZL can be attached to a substructure in a number of ways:

- fastened to concrete or masonry with wedge anchors HB-VMU plus
- $\textcircled{\sc 2}$ bolted to HALFEN Cast-in channels type HTA-CE and HZA
- $\ensuremath{\mathfrak{I}}$ connected to threaded rods
- \circledast clamped to steel profile supports
- ⑤ welded to steel components
- $\ensuremath{\textcircled{}}$ screwed or nailed to wooden structures

Typical application of the HALFEN Powerclick system

HALFEN Framing channels are a part of the HALFEN Framing system:

- installations for plant engineering
- technical equipment in buildings
- · heavy and light installations

The product range for framing system applications can be found in the following Technical Product Informations: HALFEN Flexible bolt connections, HALFEN Flexible framing connections or HALFEN Powerclick System.

5

Roof and Wall

6

Curtain Wall

APPENDIX

Index

	Page:
Accessories	84-89
Adjustment coupler HJV	86
	62.65
BL, BLQ Drick tie anchor	62-65
Brick tie anchor ML, BL	62-65
Brick tie channel HMS	62, 64
Cold-rolled channels HTA-CE	16-17
Cold-rolled channels HZA	31
Corner guard HKW	70
Corrosion protection HALFEN Channels & bolts	11-12, 31
Coupler sleeves VBM, SKM	86
Curved HALFEN Cast-in channels HTA-CE, HZA	25
	60
	63
DYNAGRIP HALFEN Cast-in channels	29-37
Dynamic Loads for HALFEN Cast-in channels	37
End anchor ANK-E for HALFEN Channels HTA	24
Firewall connection (masonry)	65
Framing channels HM. HL.	88-89
Framing channels, serrated HZM, HZL	
HALFEN Bolts	19–23
HALFEN Cast-in channels	5
HALFEN Cast-in channels; corner elements	25
HALFEN Framing channels	88-89
HCW Curtain Wall System	71-83
Hexagonal coupler SKM	86
Hexagonal nuts - bolts	85-86
HGB Handrail connection systems	38-51
HKW Corner guard	70
HKZ Restraint tie, serrated	67-68
HL Framing channels, slotted	88-89
HM Framing channels	88-89
HMS Brick tie channels	62, 64
HNA Timber fixing straps	61
Hot-rolled channels HTA-CE	16–17
Hot-rolled channels HZA	31
HS HALFEN Bolts	19–22
HSF Rafter shoe	60
HSR HALFEN Bolts with nib	23
HTA-CE HALFEN Cast-in Channels	7–28
HTU Profiled metal sheets fixing channels	52–57
HVL Precast connection	69
HZA HALFEN Cast-in channel DYNAGRIP	29-37
HZA HALFEN Cast-in channel, serrated	29-37
HZL Framing channels, slotted	88-89

	Page:
HZM Framing channels, serrated	88-89
HZS HALFEN Bolts, serrated	32-35
Locking washer SIC	85
	05
ML, MLQ Brick tie anchor	62-65
Nuts MU	85
Perforated framing channels HL, HZL	88-89
Precast connection HVL	69
Profiled metal sheet fixing channel HTU	52-57
Profiles HM, HL	88-89
Profiles, serrated, HZM, HZL	88-89
Rafter shoe HSF	60
Rail clips KLP	87
Restraint tie HKZ	67-68
Restraint with turnbuckle SPV	66
Ring nuts RM	86
Serrated profiles HZA Cast-in channels	29-37
Serrated profiles HZM, HZL Framing channels	88-89
Short & cut lengths of HALFEN Channels	18, 35
SIC Locking washer	85
SKM Coupler sleeve	86
SPH turnbuckle with right- and left-hand threads	86
SPV Restraint with turnbuckle	66
Square washers VUS	85
Standard lengths for HALFEN Channels HTA-CE	18
Standard lengths for HALFEN Channels HZA	35
Threaded rods	86
Timber fixing	58-61
Turnbuckle with right- and left-hand thread SPH	86
VBM Coupler sleeve	86
VUS Washer	85
US Washer	85
Washer US, VUS	85

CONTACT HALFEN WORLDWIDE

HALFEN is represented by subsidiaries in the following countries, please contact us!

Austria	HALFEN Gesellschaft m.b.H. Leonard-Bernstein-Str. 10 1220 Wien	Phone: +43-1-2596770 E-Mail: office@halfen.at	Fax:	+43-1-259-677099
Belgium / Luxembourg	HALFEN N.V. Borkelstraat 131 2900 Schoten	Phone: +32-3-6580720 E-Mail: info@halfen.be Internet: www.halfen.be	Fax:	+32-3-658 15 33
China	HALFEN Construction Accessories Distribution Co.Ltd. Room 601 Tower D, Vantone Centre No. A6 Chao Yang Men Wai Street Chaoyang District Beijing · P.R. China 100020	Phone: +86-1059073200 E-Mail: info@halfen.cn Internet: www.halfen.cn	Fax:	+86-1059073218
Czech Republic	HALFEN s.r.o. Business Center Šafránkova Šafránkova 1238/1 155 00 Praha 5	Phone: +420 - 311 - 690 060 E-Mail: info@halfen.cz Internet: www.halfen.cz	Fax:	+420-235-314308
France	HALFEN S.A.S. 18, rue Goubet 75019 Paris	Phone: +33-1-44523100 E-Mail: halfen@halfen.fr Internet: www.halfen.fr	Fax:	+33-1-44523152
Germany	HALFEN Vertriebsgesellschaft mbH Liebigstr. 14 40764 Langenfeld	Phone: +49-2173-970-0 E-Mail: info@halfen.de Internet: www.halfen.de	Fax:	+49-2173-970225
Italy	HALFEN S.r.I. Soc. Unipersonale Via F.Ili Bronzetti N° 28 24124 Bergamo	Phone: +39-035-0760711 E-Mail: tecnico@halfen.it Internet: www.halfen.it	Fax:	+39-035-0760799
Netherlands	HALFEN b.v. Oostermaat 3 7623 CS Borne	Phone: +31-74-267 1449 E-Mail: info@halfen.nl Internet: www.halfen.nl	Fax:	+31-74-267 2659
Norway	HALFEN AS Postboks 2080 4095 Stavanger	Phone: +47-51823400 E-Mail: post@halfen.no Internet: www.halfen.no		
Poland	HALFEN Sp. z o.o. Ul. Obornicka 287 60-691 Poznan	Phone: +48-61-6221414 E-Mail: info@halfen.pl Internet: www.halfen.pl	Fax:	+48-61-622 14 15
Spain	HALFEN Spain PLAKABETON S.L. Polígono Industrial Santa Ana c/ Ignacio Zuloaga 20 28522 Rivas-Vaciamadrid	Phone: +34 916 669 181 E-Mail: info@halfen.es Internet: www.halfen.es	Fax:	+34 916 669 661
Sweden	Halfen AB Vädursgatan 5 412 50 Göteborg	Phone: +46-31-985800 E-Mail: info@halfen.se Internet: www.halfen.se	Fax:	+46-31-985801
Switzerland	HALFEN Swiss AG Hertistrasse 25 8304 Wallisellen	Phone: +41-44-8497878 E-Mail: info@halfen.ch Internet: www.halfen.ch	Fax:	+41-44-8497879
United Kingdom/ Ireland	HALFEN Ltd. A1/A2 Portland Close Houghton Regis LU5 5AW	Phone: +44 - 1582 - 47 03 00 E-Mail: info@halfen.co.uk Internet: www.halfen.co.uk	Fax:	+44-1582-470304
United States of America	HALFEN USA Inc. PO Box 18687 San Antonio TX 78218	Phone: +1800.423.9140 E-Mail: info@halfenusa.com Internet: www.halfenusa.com	Fax:	+1 877.683.4910
For countries not listed HALFEN International	HALFEN International GmbH Liebigstr. 14 40764 Langenfeld / Germany	Phone: +49-2173-970-0 E-Mail: info@halfen.com Internet: www.halfen.com	Fax:	+49-2173-970-849

NOTES REGARDING THIS CATALOGUE

Technical and design changes reserved. The information in this publication is based on state-of-the-art technology at the time of publication. We reserve the right to make technical and design changes at any time. HALFEN GmbH shall not accept liability for the accuracy of the information in this publication or for any printing errors.

The HALFEN GmbH subsidiaries in Germany, France, the Netherlands, Austria, Poland, Switzerland and the Czech Republic are Quality Management certified according to **ISO 9001:2015**, Certificate no. 202384-2016-AQ-GER-DAkkS.

For further information please contact: www.halfen.com